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1. Introduction

Challenge of Information Retrieval:

— Content base access to documents that satisfy an user’s
information
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1. Introduction

* Probabilistic Models : capture the IR problem in
a probabilistic framework
— first probabilistic model (Binary Independent

Retrieval Model) by Robertson and Spark-Jones 1in
1976...

— late 90s, emergence of language models, still hot
topic in IR

— Opverall question: "what 1s the probability for a
document to be relevant to a query?"

« several interpretation of this sentence



1. Introduction

Classical Models
Boolean Vector Space Probabilistic
Strict  Weighted Classical  Inference Network
[Robertson & Spirk-Jones] [Tutle & Croft] Language Mo dels
[Croft],

[Hiemstra][Nie]



1. Introduction

* Points covered by the lessons

— main probabilistic information retrieval models
e theoretical aspects

» examples



1. Introduction

Probabilistic Model of IR

— Different approaches of seeing a probabilistic approach
for information retrieval

* Classical approach: probability to have the event Relevant
knowing one document and one query.

* Inference Networks approach: probability that the query i1s
true after inference from the content of a document.

» Language Models approach: probability that a query 1s
generated from a document.



2. Binary Independant Retrieval
Model

* [Robertson & Spark-Jones 1976]

— computes the relevance of a document from the
relevance known a prior1 from other documents.

— achieved by estimating of each indexing term a the
document, and by using the Bayes Theorem and a
decision rule.



2. BIR

R: binary random variable
— R=r:relevant; R =r:non relevant

— P(R=r| d, q): probability that R is r for the document and the query
considered (noted P(r|d, q) )

probability of relevance depends only from document and query
term weights are binary (d=(11...100...), wd=0 or 1)

Each term t 1s characterized by a a binary variable w,, indicating the
probability that the term occurs. P(w, = 1| q, 1) : probability that t
occurs 1n a relevant document. (P(w,=0|q,1r)=1-P(w,=1|q, 1))

the terms are conditionnaly independant to R
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2. BIR

— For a query Q

Relevant Documents
R=r
PUS

Non Relevant Documents

. R=r
with
Corpus =rel U nonrel
Relevant Documents M Non Relevant Documents = J
</ Probability for the document d
P(R:r | d, q) to be a member of the relevant
:> set of documents for q
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2. BIR

Matching function :

» Use of Bayes theorem

(" )

P(r,q) is the relevance probability. It is the
chance of randomly taking one document
from the corpus which is relevant for the

query q
J

Probability to obtain the description d
from observed relevances

P(d

r,q).P(r,q)
R(d,q

Probability that the document d belongs to
the set of relevant documents of the query

qg.

P(r‘d ,q) =

for q

probability that the document d is picked ]
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2. BIR

Matching function

— Decision: document retrieved if

P(r\d,q) P(d|r,q).P(r,q) N

= — _ 1
P(rid,q) P(d\r,q).P(r,q)

« IR looks for a ranking, so we eliminate P(r,q)/P(r,q) for a given query (constant)

* In IR, it is more simple to use logs:

(d f,q)
(d|r,q)

P
rsv(d) =, 10g( )
P




2. BIR

— Matching function

P(d

P(d

» Hypothesis of independence between terms (Binary
Independance) with weight w, for term ¢ in d :

r,q)=P(d=(10..110...)

r,q)= HP(wf= 1 r,q).l_[ Pw'=0

wtd =1 w,d =0

r.q)=P(d=(0..110..)

?,q)=HP(wf=1

w; =1 w, =0

r.q).| | Powi=0

r,q)

r,q)
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2. BIR

— Notations p, = P(w, = =P(w, = ’_’,Q)

;9Q)=1_Qt

— So

P(d ) npfnl_pt

~ 420 Pr 1-p,
V) = log(P(drq)) log(ﬂq,nl qt) log(n n )

_1 qt _() 1 Qt

1-
rsv(d]r )=, log(] | ’;>+1og<ﬂ )
_1 t 4

15



2. BIR

* Hypothesis: p=q, for the terms t in the document and absent in the
query, because no impact on the relevance of D for Q

rsv(d

1—
,0) =, log( TT 29 +1og( T —25)
1_
=bnNo 49 E0\D q,
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2. BIR

- log( [T 2+10g( [T =2

repng 9 tEQ\D -4,
1-
- v t0a( TT 2-toa( TT =2 wtog( [T =2+ 1oa( [T 122
1€DNO l tEDmQ — 4 IEQ\D —4q, tEDNQ _Qt

)

= . log( H pf)+10g( H I- q’)+10g(1—[ pf)+10g( H I- p’)

1€DNQ q, tEDﬂQ - D tEQ\D -4, tEDﬂQ -4,
1- 1-
—log( H pt( qt g(n pt)
t€DNQ q,(1 €0 l-g,
= log( H p( Pi\- )
t€DNQ q t

because log(g =p 1) is a constant for a given query Q.
- qz
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2. BIR

* Finaly ....!
d : = 1 pt(l_Qz) _ 1 pt (I_Qt) _ 1
rsv(dlr.d) = E;Q Og(czt(l—pz)) 5o Og((l—pt) q, ) E;Q o

* Now : how to estimate p, and q, ?

18



2. BIR

« Use a set of resolved queries
— (queries for which we know the answers on the corpus)

Relevant Non Relevant Total
term t present I, n, -1, n,
term t absent R, -1, N-n, - (Rt_rt) N —n,
Total R, N - R, N
— With

* 1. number of relevant documents containing the term t
« R,: number of relevant documents for a query that contains the term t

* N: number of documents in the corpus

* n, - r;: number of non relevant documents containing the term t

19



2. BIR

« Estimation of p, and g, on a set of resolved queries

Relevant Non Relevant Total
term t present I, n, -1, n,
term t absent R, -1, N-n -(R,-1,) N —n,
Total R, N - R, N
7 R -7,
pt = — 1 —_ pt =
Rt Rl‘
g _n-r I—g _N-R -n +7,
" N-R ’ N-R

20



2. BIR

 (lobal formula

rSV(D) =,

E log

€DNO

(

/R, )
(Rt_rt)/Rt _
(nt_rt)/(N_Rt) €DNO
(N_Rt —n, +7})/(N_Rt))

 to avoid problems with Os:

rsv(D)=_ . E log

(

log

( s
Rt_rt
n,—rn

\ V=R, —n, +7,

v, +0.5

R -r.+05

)

€DNO

n—r.+0.5

\N—Rt—nt+l’}+0.5/




2. BIR

— Problem of initial probabilities

* How to deal with terms not in the resolved queries

— Basic model binary and independent

22



2. BIR

« Extension to weighted terms

— Best Match [Robertson 1994] : BM25
d q
)=, log(N —-n, + 0.5). (k, +Dw, (ky +D)w!

g n,+0.5 kl((l—b)+b.—dl )+ w! ey + W
avdl

FSVpas(d

(k, +Dw*
kl((l—b)+b.cﬂ{ﬂ)+wf’ dl=avdl, b=1
° common values :

W 0
= b=0.75
k; in [0, 1000)

" : 10 2 0t State of the art results
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3. Inference Networks IR Models

e [Turtle & Croft 1996]

— Inspired from Bayesian Belief Networks 1n Artificial
Intelligence

— Idea: Compute the probability to obtain a query using
documents P(Doc — Query) : combination of evidences
— Inference Network
* Nodes: random variables
» Links: dependencies
* Direct Acyclic Graph

24



3. Inference Networks IR Models

Example: @
Uncertain inference g G
X =true=x X=falseE; @

P(d)=P(d/b,c).P(b).P(c)+ P(d /| b,c).P(b).P(c)
+P(d | b,c).P(b).P(c)+P(d/b,c).P(b).P(c)

P(b) = P(b/a).P(a)+ P(b/a).p(a) P(b)=P(b/a).p(a)+ P(b/a).p(a)
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3. Inference Networks IR Models
e InIR:

 Binary nodes
« Example @

» Inference

prob(d — q) = prob(q)
= prob(q/q,,q,).p(q,).p(q,) + prob(q /! q,.9,)-p(¢q,)-p(q,)
+ prob(q/ q, q,)-p(q,).p(q,)+ prob(q ! q,,4,).p(q,)-p(q,)

26



3. Inference Networks IR Models

e Use in IR

« Example:
— P(D) = 1/|Corpus|
— P(t/D) = tf; p.1df;  1f node from D, and p(t;)=0 othewise
—P(qyt)=1 1f link, and p(q;) =0 othewise
— Operators for the Q, with #and, #or, ...
- P(Q/Qy)=1

27



3. Inference Networks IR Models

— More a framework for IR than a theoretical
model.

— Problem of mitial probabilities not solved (in
fact tf.adf...)

— System: Inquery

28



4. Language Models of IR

e Consider two dices d1 and d2 so that :

~fordl  PU)=PG)=P(S)=1-c PQ)=P(A)=P6)=c

—ford2 P(1)=PB)=P(5B)=¢  P(2)=P(4)=P(6)= % "

* Suppose that we observe the sequence
Q={1,3,3,2}.

* What dice 1s likely to have generated this
sequence”?

29



4. Language Models of IR

P(Qld1) =(§ —&)e
if € =0.01
P(Q|d1) =3.38E - 4

P(Qld2) = (% —&).e’

P(Qld2)=2.99E -6

30



4. Language Models of IR

 InIR

— the documents are the dices, we will represent
documents as "documents models"

— the query 1s the sequence

31



4. Language Models of IR

— Comes from speech understanding theory

—Idea : Use of statistical techniques to estimate both
document models and the matching score of document
for a query

e Document model ?

— A document is a « bag of terms »

— A language model of a document is a probability function of its
terms. The terms being part of the indexing vocabulary.

32



4. Language Models of IR

— Models

 Probability P of occurrence of a word or a word sequence
in one language
— Consider a sequence s composed of words : m;, m,, ..., m,.

— The probability P(s) may be computed by
!
P(s)=| | P(m,
L]

— For complexity reasons, we simplify by considering only the n-1
preceding words of a word (namely a ngram model)

m,...m._,m,...m,_,)

P(ml.‘ml...ml._l) = P(m,

mi—n+1"'mi—1)

33



4. Language Models of IR

— Models l
* Unigram  P(s)=] | P(m,)

. [ [
+ Bigram P(s) = [Ponjm ) =T] P%; W)l")
i=1 i=1 i-1

[ [
' P(m._,m._, m
* Trigram P(s)=|[P(m|m,_,m,_) = (m;_, my_, ;)
i1 - P(m,_,m,_))

 In IR, most approaches use unigrams

34



4. Language Models of IR

e Basic idea :

P(R=r

d.q)=P(q0,,R=r) noted P(ql6),)

meaning : what 1s the probability that a user who likes
the document d should use the query q (to retrieve d)?

.. but ... how to estimate 6, ?

35



4. Language Models of IR

» Several probability laws may be used for

— Multinomial distribution

» example : one urn with several marbles of ¢ colors, several marbles of
each color may appear. A sequence of colors selected (marble selected
and put back) is modelled by a multinomial law of probability:

p(cl, c2, c2)=p(cl)*p(c2)*p(c2)
* we have 2 p(C) —1

— Multinomial distribution for documents [Song and Fei1]:

* here we compute the probability that the query terms get selected from
the document

 each word occurrence is independant
« with V the vocabulary: EEV p(t‘ﬁ ) =1

! q q
P(q‘gd)= (q‘ ') Hrevp(t‘ed)% * tEVp(t‘Hd)Wt

[ (7

eV
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4. Language Models of IR

Several probability laws may be used for 6,
— Multiple Bernoulli

* define a binary random variable X, for each term t that
indicates whether the term 1s present (X,=1) or absent (X,=0)
in the query.

 each word is considered independant

* we have for each t: p(X, = l‘ﬁd) + p(X, = O‘Hd) =1

e the parameters are: 6, = {p(X , = 1‘6’61 )}EV

p(Q‘ﬁd) =1_[P(Xt =1‘Hd)1—[(1_P(Xt =1‘6’d))
= 1&g

37



4. Language Models of IR

* We focus here on the Multinomial model (good results
and more used 1n litterature)

* How to estimate the parameters of the model?

— A simple solution: use the Maximum Likelihood estimate
(MLE) to fit the statistical model to the data: We look for the p(t|
0,) that maximize the probability to observe the document.

t t
Wo Wy

Bt (t‘Hd) = E W ‘d‘ with w'; the countof tin d

d

eV

t
Tl

respects the "multinomial constraint" : EPML #6,) = E‘Vd‘ = i =
=V 38



4. Language Models of IR

 Is it done, so? Not really... consider

— a vocabulary V={"day", "night", "sky"}

— a document d so that 6 ={p, (day| 64)=0.67, p,, (night]|
0,)=0.33, py(sky| 64)=0}
— a query g="day sky"
— then: p(q| 64) = pyy(day| 6y)" * pyy (sky| 6,)
= 0.67*0
=0 ...

even 1s the document matches partially the query!

39



4. Language Models of IR

* This problems comes from the fact that we used only the
document source to model the probability distribution,
and the document 1s not large enough to really contain all
the needed data...

* So, P, 1s itself not sufficient for the language model of
documents.

* One solution 1s to integrate data from a larger set, the
collection of documents.

40



4. Language Models of IR

* The solution is to achieve probability smoothing

— we smooth the p,,; by a probability coming from the
COTrpus

— mainly the probability coming from the corpus 1s
defined as Wd

P(C) = =
X Zg‘d

* Several smoothings exist (with different impact on

retrieval quality), corresponding to several ways to
manage the integration between the data from thre

documents and the corpus

41



4. Language Models of IR

 Jelinek-Mercer smoothing

— fixed coefficient interpolation

P,(16,) = (1- A).P,, (16,) + A.P({C)

—one A 1n [0, 1] for all the documents

— when A=0, we get P, when A=1 all document models
are the same as the collection model.

— Estimation with several values A on one test collection.
— simple to compute, good results.

42



4. Language Models of IR

» Jelinek smoothing guaranties the contraint related
to multinomial distribution ¥ _ p, (t‘é’d) -1 ?

{
¢ Wy
Wy

+ We have m(f\@)ﬂl—@zwﬁﬁ <~

d W,
=/

t t
Wy Wq

e SO pﬂ(l‘é)=(1—/l)ta/ My =a=e
gl T )X
= eC 1
=(1-A)+4
=1

43



4. Language Models of IR

* Dirichlet smoothing

— 1nterpolation dependant of each document, with one
parameter w

— considers that the corpus adds pseudo occurrences of
terms (non integer) :

w, + uP(C)

P (16,) =

44



4. Language Models of IR

* Dirichlet smoothing

— do we still get multinomial distributions?

t%)=m§+yPOKD

P,(t

!
w, + U
=

— Yes: EPM(t 6,) = Ewlf +M.; (W} + uP(#C))

= d
el

1 t
_ E o .(; W, + MZV P({|C))
eV

1
= (YW, +u)=1
> Wi+ u 2"
el

45



4. Language Models of IR

* Dirichlet smoothing
— relationship with Jelinek-Mercer smoothing

Wit iPUO) _ Jd] wi P({C)
dl+u [+ |d] |d]+

=ﬂp 6 (¢
‘d‘_l_ﬂ'ML(‘d) (

~\

— long documents have less smoothing (because more
data)

— Dirichlet smoothing: very good results (values around
1000 or greater).

éd)=

Pt

C)

46



4. Language Models of IR

 Why smoothing 1s important?

— In fact, smoothing makes a link with IDF [Lafferty &
Zhai 2001 ]

— consider that a general smoothing 1s of the form

6¢,) 1if tindocumentd

~y e
P u (t ed) = :
adp(t‘C) otherwise
method P (w|0,) o Parameter
Jelinek- (1-4).B, (6,) + A.P({C) A A
Mercer
Dirichlet | ¥i+#P¢C) u u
W, + u E W+ U




4. Language Models of IR

Why smoothing 1s important?

éd) = rank E Wtqlog p(t

el

= rank E Wtqlogps (t‘gd) +; Wtqlogaa’p(t‘c)

=d

0,)

log P(q

= rank Ewtqlogps(t‘ed)+zwtqlogadp(t‘c)_ Ewtqlogadp(t‘c)

t=d =S4 ted

ps(t‘gd)
= wilog——————+ ) wl.loga, + Y wldog p(t|C
rank; gadp(t‘c) ; g d}/@( )

"similar" to TFE.IDF
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4. Language Models of IR

* Generalization of the original matching function,
negative Kullback-Leibler divergence:

6,) = ‘Ep(f‘gq)log P,

~KL(6, R
& P({6,)

« KL divergence compares two probabilities
distributions (relative entropy: how to code one
distribution with another one)

49



4. Language Models of IR

« KL divergence on multinomial distributions of
query and document and MLE similar to original

matching: - P log P(1 l?q)
= P(10,)

-KL(8,)0,

E ‘q‘ 1ogp(4e )+ E logP(t‘H )

0,)

IS4

rank 108 H P(t‘éd )Wtq

ey

0,)

ank P(q

50



4. Language Models of IR

* The KL divergence considers by definition
comparison of distributions, which seems closer to
the usual meaning of matching in IR.

« KL 1s implemented as Language Model matching
in Terrier and Lemur.

51



5. Conclusion

* Language models are state of the art IR
— Multinomial
— Dairichlet smoothing
— Strong fundamentals, links to heuristics in IR (TF, IDF)

* Many extentions
— cluster-based smoothing
— other probability models (Poisson)
— other smoothings

« LM state of the art, competing with BM 25.

52
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— Use in IR — Model of Hiemstra
ldeas grore(D,0)= P(D/Q)=P(D/tt,..1))  withQ=t,t,...t

_ p(p) Plttz:1, /D)
P(tt,..t)

* Hypotheses :

— Independent query terms
* Notation : P(tt,...t )=1/c

* Weobtain:  g.ore(D, Q) = cP( D)]l P(t,/ D)
— We define s

P(D) = H : Probability of the document
]

P(t. /D)= P, (t./D)+(1-a,).P, (t /C)

: Probability of a term knowing a document
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— Use in IR — Model of Hiemstra

» Expansion of P(t./D)

1) | dr@)
P(t,/1D)=a. LY L1
DS TS o

= (a,. tf(ti). zzf() .- )df(t)
SN0 (-a)df (1) S dr o

 So

@) 2 IO N AN

o SO A-a)di@) > df (@)

Score(D,Q) =c.—
ol
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— Used in IR — Model of Hiemstra

 We use logs

Score(D,Q)=c.‘D‘ (( . A0 2 AQ f).(-a,) daf (¢,) ]

N

€] e E i (1) (1-e,)df (1) Etdf(f)
) RO AC df (t,)
e DO =g ]1 S o a0 df()])
— Constants elements for one query
_ 2] ADIEDICAC @)
10g—SCOI”€(D,Q)—10g(0)+10g(‘c‘)+210g(05 S 70 (o)) +1) + ;Qo g((l 1)2 7
- 50 D dr (1)
log(c), log(‘?), and llZQlog((l—a) Eidf(t)
df (¢
log— Score(D, Q) o Elog(oz1 AQ) E A +1)
& Y00 1-a)df () )




— Use 1n IR — Model of Hiemstra
 Typical value for a, : 0.15

* Defines a strong formal framework for IR

« Comparable results than the vector space model but possible
extensions (example : good results on web pages)
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