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1. Introduction 
•  Challenge of Information Retrieval: 

–  Content base access to documents that satisfy an user’s 
information 

Information
need

documents 

relevance? 

expression retrieval 

visualization 
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1. Introduction 
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the content documents
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of Matching 

function
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Information Retrieval System (IRS)
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(content)
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1. Introduction 
•  Probabilistic Models : capture the IR problem in 

a probabilistic framework 
–  first probabilistic model (Binary Independent 

Retrieval Model) by Robertson and Spark-Jones in 
1976… 

–  late 90s, emergence of language models, still hot 
topic in IR 

–  Overall question: "what is the probability for a 
document to be relevant to a query?" 
•  several interpretation of this sentence 
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1. Introduction 

Classical Models 

Boolean                          Vector Space               Probabilistic 

  Strict     Weighted                            Classical       Inference Network    

          Language Models [Robertson & Spärk-Jones] [Tutle & Croft] 

[Croft], 
[Hiemstra][Nie] 
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1. Introduction 

•  Points covered by the lessons 
– main probabilistic information retrieval models 

•  theoretical aspects  
•  examples 
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1. Introduction 

•  Probabilistic Model of IR 
– Different approaches of seeing a probabilistic approach 

for information retrieval 
•  Classical approach: probability to have the event Relevant 

knowing one document and one query. 
•  Inference Networks approach: probability that the query is 

true after inference from the content of a document. 
•  Language Models approach: probability that a query is 

generated from a document. 
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2. Binary Independant Retrieval 
Model  

•  [Robertson & Spark-Jones 1976] 
–  computes the relevance of a document from the 

relevance known a priori from other documents.  

–  achieved by estimating of each indexing term a the 
document, and by using the Bayes Theorem and a 
decision rule. 
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2. BIR 
•  R: binary random variable 

–  R = r : relevant;     R = r : non relevant 
–  P(R=r | d, q): probability that R is r for the document and the query 

considered   (noted P(r | d, q) ) 

•  probability of relevance depends only from document and query 
•  term weights are binary (d=(11…100…), wd

t=0 or 1) 

•  Each term t is characterized by a a binary variable wt, indicating the 
probability that the term occurs. P(wt = 1 | q, r) : probability that t 
occurs in a relevant document. (P(wt = 0 | q, r) =1 – P(wt = 1 | q, r) ) 

•  the terms are conditionnaly independant to R 
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2. BIR 

 
– For a query Q 

Non Relevant Documents
R=r

CORPUS

Relevant Documents
R=r

with
Corpus = rel  ∪ nonrel
Relevant Documents  ∩ Non Relevant Documents = ∅

Probability for the document d 
to be a member of the relevant 
set of documents for q

P(R=r | d, q) 
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2. BIR 
•  Matching function : 

•  Use of Bayes theorem 

Probability that the document d belongs to 
the set of relevant documents of the query 
q.

Probability  to  obtain  the  description  d 
from observed relevances

probability that the document d is picked 
for q

P(r,q) is the relevance probability. It is the 
chance of randomly taking one document 
from the corpus which is relevant for the 
query q

),(
),().,(

),(
qdP

qrPqrdP
qdrP =
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2. BIR 
Matching function 

–  Decision: document retrieved if  
                                                                                       

•  IR looks for a ranking, so we eliminate P(r,q)/P(r,q) for a given query (constant) 
•  In IR, it is more simple to use logs: 

1
),().,(
),().,(

),(
),(

>=
qrPqrdP
qrPqrdP

qdrP
qdrP

)
),(
),(

log()(
qrdP
qrdP

drsv rank=
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2. BIR 
– Matching function 

•  Hypothesis of independence between terms (Binary 
Independance) with weight wd

t for term t in d : 

 

P(d r,q) = P(d = (10...110...) r,q) = P(wd
t =1 r,q).

wt
d=1
∏ P(wd

t = 0 r,q)
wt
d=0
∏

P(d r,q) = P(d = (10...110...) r,q) = P(wd
t =1 r,q).

wt
d=1
∏ P(wd

t = 0 r,q)
wt
d=0
∏
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2. BIR 

–  Notations 

–  Then 

–  So  

rsv(d r,q) =rank log(
pt
qtwt

d=1
∏ )+ log( 1− pt

1− qtwt
d=0
∏ )

pt = P(wt =1 r,q) qt = P(wt =1 r,q)

P(wt = 0 r,q) =1− pt P(wt = 0 r,q) =1− qt

rsv(d) =rank log(
P(d r,q)
P(d r,q)

) = log(
pt

wt
d=1
∏ . 1− pt

wt
d=0
∏

qt
wt
d=1
∏ . 1− qt

wt
d=0
∏

) = log( pt
qtwt

d=1
∏ ×

1− pt
1− qtwt

d=0
∏ )



2. BIR 
•  Hypothesis: pt=qt for the terms t in the document and absent in the 

query, because no impact on the relevance of D for Q 
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2. BIR 
 
 
 
 
 
 
 
 
 
 
 
because                        is a constant for a given query Q. 

= log( pt (1− qt )
qt (1− pt )t∈D∩Q

∏ )− log( 1− pt
1− qtt∈Q

∏ )

)
1
1log(∏

∈ −

−

Qt i

i

i
q
p

rsv(d r,q) =rank log(
pt
qtt∈D∩Q

∏ )+ log( 1− pt
1− qtt∈Q\D

∏ )

=rank log(
pt
qtt∈D∩Q

∏ )− log( 1− pt
1− qtt∈D∩Q

∏ )+ log( 1− pt
1− qtt∈Q\D

∏ )+ log( 1− pt
1− qtt∈D∩Q

∏ )

=rank log(
pt
qtt∈D∩Q

∏ )+ log( 1− qt
1− ptt∈D∩Q

∏ )+ log( 1− pt
1− qtt∈Q\D

∏ )+ log( 1− pt
1− qtt∈D∩Q

∏ )

= log( pt (1− qt )
qt (1− pt )t∈D∩Q

∏ )



2. BIR 

•  Finaly .... ! 

•  Now : how to estimate pt and qt ? 
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2. BIR 
•  Use a set of resolved queries 

–  (queries for which we know the answers on the corpus) 

–  With  
•  rt: number of relevant documents containing the term t 
•  Rt: number of relevant documents for a query that contains the term t 
•  N: number of documents in the corpus 
•  nt - rt: number of non relevant documents containing the term t 

Relevant Non Relevant Total 

term  t present  rt nt - rt  nt 
term t absent Rt - rt N - nt - (Rt - rt ) N – nt 

Total  Rt N - Rt N 
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2. BIR 
•  Estimation of pi and qi on a set of resolved queries 

t
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2. BIR 
•  Global formula 

•  to avoid problems with 0s: 
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2. BIR 

 
– Problem of initial probabilities 

•  How to deal with terms not in the resolved queries 

– Basic model binary and independent 
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2. BIR 

•  Extension to weighted terms 
– Best Match [Robertson 1994] : BM25 
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3. Inference Networks IR Models 
•  [Turtle & Croft 1996] 

–  Inspired from Bayesian Belief Networks in Artificial 
Intelligence 

–  Idea: Compute the probability to obtain a query using 
documents                                : combination of evidences  

–  Inference Network 
•  Nodes: random variables 
•  Links: dependencies 
•  Direct Acyclic Graph 
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)( QueryDocP →



3. Inference Networks IR Models 
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A 

C B 

D 

P(d) = P(d / b,c).P(b).P(c)+P(d / b,c).P(b).P(c)

+P(d / b,c).P(b).P(c)+P(d / b,c).P(b).P(c)

Example: 
 
Uncertain inference 

X = true ≡ x X = false ≡ x

)()./()()./()()()./()()./()( apabPapabPbPapabPaPabPbP +=+=
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3. Inference Networks IR Models 
•  In IR: 

•  Binary nodes 
•  Example 

 
•  Inference 

Q 

Q1 Q2 

qM 

t1 

D 

tN t3 

q2 

t2 

q1 

… 

prob(d→ q) = prob(q)

= prob(q / q1,q2 ).p(q1).p(q2 )+ prob(q / q1,q2 ).p(q1).p(q2 )

+ prob(q / q1,q2 ).p(q1).p(q2 )+ prob(q / q1,q2 ).p(q1).p(q2 )
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3. Inference Networks IR Models 

•  Use in IR 
• Example: 

– P(D) = 1/|Corpus| 
– P(ti/D) = tfi,D.idfi    if node from D, and p(ti)=0 othewise 
– P(qj/ti)=1    if link,  and p(qi) = 0 othewise 
– Operators for the Qi with #and, #or, … 
– P(Q/Qk)=1 
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3. Inference Networks IR Models 

– More a framework for IR than a theoretical 
model.  

– Problem of initial probabilities not solved (in 
fact tf.idf…) 

 
– System: Inquery 
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4. Language Models of IR 

•  Consider two dices d1 and d2 so that : 
–  for d1 
–  for d2 

•  Suppose that we observe the sequence 
Q={1,3,3,2}. 

•  What dice is likely to have generated this 
sequence?  

P(1) = P(3) = P(5) = 1
3
−ε P(2) = P(4) = P(6) = ε

P(1) = P(3) = P(5) = ε P(2) = P(4) = P(6) = 1
3
−ε



4. Language Models of IR 
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4. Language Models of IR 

•  In IR 
–  the documents are the dices, we will represent 

documents as "documents models" 
–  the query is the sequence 
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4. Language Models of IR 

– Comes from speech understanding theory 
– Idea : Use of statistical techniques to estimate both 

document models and the matching score of document 
for a query 

•  Document model ? 
–  A document is a « bag of terms » 
–  A language model of a document is a probability function of its 

terms. The terms being part of the indexing vocabulary.  



33 

4. Language Models of IR 
– Models 

•  Probability P of occurrence of a word or a word sequence 
in one language 

–  Consider a sequence s composed of words : m1, m2, …, ml. 
–  The probability P(s) may be computed by 

–  For complexity reasons, we simplify by considering only the n-1 
preceding words of a word (namely a ngram model) 

∏
=

−−=
l

i
iii mmmmmPsP

1
1111 )......()(

)...()...( 1111 −+−− = iniiii mmmPmmmP
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4. Language Models of IR 
– Models 

•  Unigram 

•  Bigram 

•  Trigram 

•  In IR, most approaches use unigrams 
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4. Language Models of IR 

•  Basic idea : 
 
 
meaning : what is the probability that a user who likes 

the document d should use the query q (to retrieve d)?  
 
 
… but … how to estimate       ?  

)(),(),( dd qPnotedrRqPqdrRP θθ ===

dθ
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4. Language Models of IR 
•  Several probability laws may be used for 

–  Multinomial distribution 
•  example : one urn with several marbles of c colors, several marbles of 

each color may appear. A sequence of colors selected (marble selected 
and put back) is modelled by a multinomial law of probability:   

                     p(c1, c2, c2)=p(c1)*p(c2)*p(c2) 
•  we have  

–  Multinomial distribution for documents [Song and Fei]: 
•  here we compute the probability that the query terms get selected from 

the document 
•  each word occurrence is independant  
•  with V the vocabulary: 

  

dθ

1)( =∑c
cp

1)( =∑∈Vt dtp θ

P(q θd ) =
q !
wt

q !( )
t∈V
∏

p(t θdt∈V∏ )wt
q

∝ p(t θdt∈V∏ )wt
q
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4. Language Models of IR 

•  Several probability laws may be used for 
– Multiple Bernoulli 

•  define a binary random variable Xt for each term t that 
indicates whether the term is present (Xt=1) or absent (Xt=0) 
in the query. 

•  each word is considered independant 
•  we have for each t:  
•  the parameters are:  
  

dθ

1)0()1( ==+= dtdt XpXp θθ
{ }

Vtdtd Xp
∈

== )1( θθ

))1(1().1()( ∏∏
∉∈

=−==
qt

dt
qt

dtd XPXPqp θθθ
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4. Language Models of IR 
•  We focus here on the Multinomial model (good results 

and more used in litterature) 
•  How to estimate the parameters of the model? 

–  A simple solution: use the Maximum Likelihood estimate 
(MLE) to fit the statistical model to the data: We look for the p(t|
θd) that maximize the probability to observe the document. 

d
w

w
wtP

t
d

Vt

t
d

t
d

dML ==
∑
∈

)( θ with wt
d the count of t in d 

respects the "multinomial constraint" : 1)( ===
∑

∑ ∈

∈ d
d

d

w
tP Vt

t
d

Vt
dML θ
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4. Language Models of IR 

•  Is it done, so? Not really... consider  
–  a vocabulary V={"day", "night", "sky"} 
–  a document d so that θd={pML(day| θd)=0.67, pML(night| 
θd)=0.33, pML(sky| θd)=0} 

–  a query q="day sky" 
–  then: p(q| θd) ∝  pML(day| θd)1 * pML(sky| θd)1 

                                          =  0.67 * 0 
                             = 0     …! 

even is the document matches partially the query! 
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4. Language Models of IR 
•  This problems comes from the fact that we used only the 

document source to model the probability distribution, 
and the document is not large enough to really contain all 
the needed data... 

•  So, PML is itself not sufficient for the language model of 
documents. 

•   One solution is to integrate data from a larger set, the 
collection of documents. 
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4. Language Models of IR 
•  The solution is to achieve probability smoothing 

– we smooth the pML by a probability coming from the 
corpus 

– mainly the probability coming from the corpus is 
defined as 

 
•  Several smoothings exist (with different impact on 

retrieval quality), corresponding to several ways to 
manage the integration between the data from thre 
documents and the corpus 
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4. Language Models of IR 

•  Jelinek-Mercer smoothing 
–  fixed coefficient interpolation 

–  one λ in [0, 1] for all the documents 
– when λ=0, we get PML, when λ=1 all document models 

are the same as the collection model. 
– Estimation with several values λ on one test collection. 
–  simple to compute, good results. 

)(.)().1()ˆ( CtPtPtP dMLd λθλθλ +−=
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4. Language Models of IR 

•  Jelinek smoothing guaranties the contraint related 
to multinomial distribution                          ? 

•  We have 

•  So 
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4. Language Models of IR 

•  Dirichlet smoothing 
–  interpolation dependant of each document, with one 

parameter µ 
–  considers that the corpus adds pseudo occurrences of 

terms (non integer) : 
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4. Language Models of IR 

•  Dirichlet smoothing 
–  do we still get multinomial distributions? 

– Yes: 
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4. Language Models of IR 
•  Dirichlet smoothing  

–  relationship with Jelinek-Mercer smoothing 

–  long documents have less smoothing (because more 
data) 

– Dirichlet smoothing: very good results (values around 
1000 or greater). 
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4. Language Models of IR 
•  Why smoothing is important? 

–  In fact, smoothing makes a link with IDF [Lafferty & 
Zhai 2001]  

–  consider that a general smoothing is of the form 
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4. Language Models of IR 

•  Why smoothing is important? 
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4. Language Models of IR 

•  Generalization of the original matching function, 
negative Kullback-Leibler divergence: 

•  KL divergence compares two probabilities 
distributions (relative entropy: how to code one 
distribution with another one) 
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4. Language Models of IR 

•  KL divergence on multinomial distributions of 
query and document and MLE similar to original 
matching: 
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4. Language Models of IR 

•  The KL divergence considers by definition 
comparison of distributions, which seems closer to 
the usual meaning of matching in IR. 

•  KL is implemented as Language Model matching 
in Terrier and Lemur. 
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5. Conclusion 
•  Language models are state of the art IR 

–  Multinomial 
–  Dirichlet smoothing 
–  Strong fundamentals, links to heuristics in IR (TF, IDF) 

•  Many extentions  
–  cluster-based smoothing 
–  other probability models (Poisson) 
–  other smoothings 

•  LM state of the art, competing with BM 25. 
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–  Use in IR – Model of Hiemstra 
•  Idea :  

•  Hypotheses :  
–  Independent query terms 

•  Notation : P(t1t2…tn)=1/c 
•  We obtain: 

–  We define 
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–  Use in IR – Model of Hiemstra 
•  Expansion of P(ti/D) 

•  So 
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–  Used in IR – Model of Hiemstra 

•  We use logs 

–  Constants elements for one query 

–  So 
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– Use in IR – Model of Hiemstra 
•  Typical value for α1 : 0.15 
•  Defines a strong formal framework for IR 
•  Comparable results than the vector space model but possible 

extensions (example : good results on web pages) 


