Multimedia Indexing and Retrieval

Deep Learning for multimedia indexing and retrieval

Georges Quénot
Multimedia Information Modeling and Retrieval Group

Outline

- Introduction
- Machine learning
- Loss function
- Formal neuron
- Single layer perceptron
- Multilayer perceptron
- Reminders about differential calculus
- Back-propagation
- Learning rate
- Mini-batches
- Convolutional layers
- Pooling, softmax ...

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- 1000 visual "fine grain" categories / labels (exclusive)
- 150,000 test images (hidden "ground truth")
- 50,000 validation images
- 1,200,000 training images
- Each training, validation or test image falls within exactly one of the 1000 categories
- Task: for each image in the test set, rank the categories from most probable to least probable
- Metric: top-5 error rate: percentage of images for which the actual category is not in the five first ranked categories
- Held from 2010 to 2015, frozen since 2012

Going deeper and deeper

For comparison, human performance is 5.1% (Russakovsky et al.)

Deep Convolutional Neural Networks

- Decades of algorithmic improvements in neural networks (Stochastic Gradient Descent, initialization, momentum ...)
- Very large amounts of properly annotated data (ImageNet)
- Huge computing power (Teraflops \times weeks): GPU!
- Convolutional networks
- Deep networks (>> 3 layers)
- ReLU (Rectified Linear Unit) activation functions
- Batch normalization
- Drop Out

Deep Learning is (now) EASY

- Maths: linear algebra and differential calculus (training only)
- $Y=A . X+B$ (with tensor extension)
- $f(x+h)=f(x)+f^{\prime}(x) \cdot h+o(h)$ (with multidimensional variables)
- $(g \circ f)^{\prime}(x)=\left(g^{\prime} \circ f\right)(x) \cdot f^{\prime}(x)$ (recursively applied)
- Tools: amazingly integrated, effective and easy to use packages
- Mostly python interface
- Autograd packages: only need to care of the linear algebra part
- Get started with:
- 3-hour course
- 1-hour PyTorch tutorial (familiarity with python assumed)

Parametric supervised learning

- Parameterized function: $f: \mathbb{R}^{m} \rightarrow Y^{X}$

$$
\theta \rightarrow f_{\theta}
$$

- f is a "meta" function or a family of function
- Target function: $f_{\theta}: X \rightarrow Y$

$$
x \rightarrow y=f_{\theta}(x)
$$

$-X$: set of valid input objects $\left(\mathbb{R}^{d}\right)$

- Y : set of possible output values $\left(\mathbb{R}^{c}\right)$
- Training data: $S=\left(x_{i}, y_{i}\right)_{(1 \leq i \leq I)}$
$-I$: number of training samples
- Learning algorithm: $L_{f}:(X \times Y)^{*} \rightarrow \mathbb{R}^{m}$

$$
S \quad \rightarrow \theta=L_{f}(S)
$$

- Regression or classification system: $y=f_{\theta}(x)=f(\theta, x)$

Multi-label loss function

- Predict P labels for each data sample x
- P decision functions : $f=\left(f_{p}\right)_{(1 \leq p \leq P)}$
- Example with f depending on a parameter vector:

$$
E_{S}(\theta)=\frac{1}{2} \sum_{i=1}^{i=I} \sum_{p=1}^{p=P}\left(f_{p}\left(\theta, x_{i}\right)-y_{i p}\right)^{2}=\frac{1}{2} \sum_{i=1}^{i=I}\left(f\left(\theta, x_{i}\right)-y_{i}\right)^{2}
$$

(same as single label case with Euclidean distance between vectors of predictions and vectors of labels)

- $\theta^{*}=\underset{\theta}{\operatorname{argmin}} E_{S}(\theta)$
- The f_{p} functions may take any real value

Formal neural or unit (two sub-units)

linear and vector part
$y=\sum_{j} w_{j} x_{j}=w \cdot x$
linear combination
x : column vector
w : row vector
non-linear and scalar part

$$
z=\sigma(y+b)=\frac{1}{1+e^{y+b}}
$$

sigmoid function
$y, b, z:$ scalars

Neural layer (all to all, two sub-layers)

$$
y_{i}=\sum_{j} w_{i j} x_{j} \quad z_{i}=\sigma\left(y_{i}+b_{i}\right)=\frac{1}{1+e^{y_{i}+b_{i}}}
$$

matrix-vector multiplication

$$
Y=W \cdot X
$$

per component operation

$$
z=\sigma(Y+B)
$$

Multilayer perceptron (all to all)

$$
I=X_{0} \quad W_{l}, B_{1} \quad X_{1} \quad W_{2}, B_{2} \quad X_{2} \quad W_{3}, B_{3} \quad X_{3}=O
$$

input layer
hidden
layer
output layer

Multilayer perceptron (all to all)

$$
\begin{array}{rr}
Y_{1}=W_{1} \cdot X_{0}=F_{1}\left(W_{1}, X_{0}\right) & X_{1}=\sigma\left(Y_{1}+B_{1}\right)=G_{1}\left(B_{1}, Y_{1}\right) \\
Y_{2}=W_{2} \cdot X_{1}=F_{2}\left(W_{2}, X_{1}\right) & X_{2}=\sigma\left(Y_{2}+B_{2}\right)=G_{2}\left(B_{2}, Y_{2}\right) \\
Y_{3}=W_{3} \cdot X_{3}=F_{3}\left(W_{3}, X_{2}\right) & X_{3}=\sigma\left(Y_{3}+B_{3}\right)=G_{3}\left(B_{3}, Y_{3}\right) \\
O=X_{3}=G_{3}\left(B_{3}, F_{3}\left(W_{3}, G_{2}\left(B_{2}, F_{2}\left(W_{2}, G_{1}\left(B_{1}, F_{1}\left(W_{1}, X_{0}=I\right)\right)\right)\right)\right)\right.
\end{array}
$$

Denoting $F(W)$ so that $F(W, X)=(F(W))(X)$:

$$
O=\left(G_{3}\left(B_{3}\right) \circ F_{3}\left(W_{3}\right) \circ G_{2}\left(B_{2}\right) \circ F_{2}\left(W_{2}\right) \circ G_{1}\left(B_{1}\right) \circ F_{1}\left(W_{1}\right)\right)(I)
$$

Composition of simple functions

Splitting units and layers, renaming and renumbering:

$$
\begin{array}{ll}
X_{1}=W_{1} \cdot X_{0}=F_{1}\left(W_{1}, X_{0}\right) & X_{2}=\sigma\left(X_{1}+W_{2}\right)=F_{2}\left(W_{2}, X_{1}\right) \\
X_{3}=W_{3} \cdot X_{2}=F_{3}\left(W_{3}, X_{2}\right) & X_{4}=\sigma\left(X_{3}+W_{4}\right)=F_{4}\left(W_{4}, X_{3}\right) \\
X_{5}=W_{5} \cdot X_{4}=F_{5}\left(W_{5}, X_{4}\right) & X_{6}=\sigma\left(X_{5}+W_{6}\right)=F_{6}\left(W_{6}, X_{5}\right)
\end{array}
$$

$$
\begin{equation*}
O=\left(F_{6}\left(W_{6}\right) o F_{5}\left(W_{5}\right) \text { o } F_{4}\left(W_{4}\right) \text { o } F_{3}\left(W_{3}\right) \text { o } F_{2}\left(W_{2}\right) \text { o } F_{1}\left(W_{1}\right)\right)(I)=\left(o_{n=1}^{n=6} F_{n}\left(W_{n}\right)\right) \tag{I}
\end{equation*}
$$

Composition of simple functions

Composition of simple functions

- Model parameters: $\theta=\left(a_{0}, a_{1}, b_{1}, a_{2}, b_{2} \ldots\right)$
- Empirical risk on training data: $E(\theta)=\sum_{i}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}$
- Find the optimal function by gradient descent on θ
- Any function can do: sigmoids, gaussians, sin/cos ...
- ReLU is simpler and converges faster
- More layers: more complex functions with less parameters

Feed Forward Network

- Global network definition: $O=F(W, I)$ ($I \equiv x O \equiv y F \equiv f W \equiv \theta$ relative to previous notations)
- Layer values: $\left(X_{0}, X_{1} \ldots X_{N}\right)$ with $X_{0}=I$ and $X_{N}=O$ (X_{n} are vectors)
- Global vector of all unit parameters:
$W=\left(W_{1}, W_{2} \ldots W_{N}\right)$
(weights by layer are concatenated, W_{n} can matrices or vectors or any parameter structure, and even possibly empty)
- Feed forward: $X_{n+1}=F_{n+1}\left(W_{n+1}, X_{n}\right)$
- Possibly "joins" and "forks" (but no cycles)

Error back-propagation

- Training set: $S=\left(I_{i}, O_{i}\right)_{(1 \leq i \leq I)}$ input-output samples
- $X_{i, 0}=I_{i}$ and $X_{i, n+1}=F_{n+1}\left(W_{n+1}, X_{i, n}\right)$
- Note: regarding this notation the vector-matrix multiplication counts as one layer and the element-wise non-linearity counts as another one (not mandatory but greatly simplifies the layer modules' implementation)
- Error (empirical risk) on the training set:

$$
E(W)=\sum_{i}\left(F\left(W, I_{i}\right)-O_{i}\right)^{2}=\sum_{i}\left(X_{i, N}-O_{i}\right)^{2}
$$

- Minimization of $E(W)$ by gradient descent

Gradient descent

Error back-propagation

- Minimization of $E_{S}(W)$ by gradient descent:
- The gradient indicate an ascending direction: move in the opposite
- Randomly initialize W (0)
- Iterate $W(t+1)=W(t)-\eta \frac{\partial E}{\partial W}(W(t)) \quad \eta=f(t)$ or $\left(\frac{\partial^{2} E}{\partial W^{2}}(W(t))\right)^{-1}$
$-\frac{\partial E}{\partial W}=\left(\frac{\partial E}{\partial W_{1}}, \frac{\partial E}{\partial W_{2}} \ldots \frac{\partial E}{\partial W_{N}}\right) \quad\left(W=\left(W_{1}, W_{2} \ldots W_{N}\right)\right)$
- Back-propagation: $\frac{\partial E}{\partial W_{n}}$ is computed by backward recurrence from $\frac{\partial F_{n}}{\partial W_{n}}$ and $\frac{\partial F_{n}}{\partial X_{n-1}} \quad$ applying iteratively $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) \cdot f^{\prime}$
- Two derivatives, relative to weight and to data to be considered

Differential of a function scalar input and scalar output

- $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow f(x)$ f is differentiable
- $y=f(x)$
- $f(x)-f(x+h)=f^{\prime}(x) h+o(h) \quad\left(\lim _{h \rightarrow 0} \frac{o(h)}{h}=0\right)$
- $d y=f^{\prime}(x) d x \quad$ i.e: f is "locally linear"
- $\frac{d y}{d x} \equiv f^{\prime}(x)$
(notation)
- $d y=\frac{d y}{d x} d x \quad$ ("local scale factor")
- All values are scalar

Differential of a composed function scalar input and scalar output

- $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow f(x)$
f is differentiable
- $y=f(x)$
- $g: \mathbb{R} \rightarrow \mathbb{R}: y \rightarrow g(y)$
g is differentiable
- $z=g(y)$
- $(g \circ f)^{\prime}(x)=\left(g^{\prime} \circ f\right)(x) \cdot f^{\prime}(x)=g^{\prime}(y) \cdot f^{\prime}(x)$
- $d y=\frac{d y}{d x} d x \quad d z=\frac{d z}{d y} d y$
- $d z=\frac{d z}{d y} \cdot \frac{d y}{d x} d x \quad \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$

Differential of a function of a vector vector input and scalar output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}: x \rightarrow f(x)$
f is differentiable
- $y=f(x)$

$$
x=\left(x_{i}\right)_{(1 \leq i \leq N)}
$$

- $f(x)-f(x+h)=\operatorname{grad} f(x) . h+o(\|h\|)$
- $d y=\operatorname{grad} f(x) \cdot d x=\sum_{i=1}^{i=n} \frac{\partial f}{\partial x_{i}}(x) \cdot d x_{i}=\sum_{i=1}^{i=n} \frac{\partial y}{\partial x_{i}} \cdot d x_{i}=\frac{\partial y}{\partial x} . d x$
- $\frac{\partial y}{\partial x} \equiv \frac{\partial f}{\partial x}(x)=\operatorname{grad} f(x) \quad \frac{\partial y}{\partial x_{i}} \equiv \frac{\partial f}{\partial x_{i}}(x)$
(notations)
- $y, d y$ and $f(x)$ are scalars;
- $x, d x$ and h are "regular" (column) vectors;
- $\frac{\partial y}{\partial x}$ is a transpose (row) vector.

Differential of a vector function of a vector vector input and vector output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow f(x)$ f is differentiable
- $y=f(x) \quad x=\left(x_{i}\right)_{(1 \leq i \leq N)} \quad y=\left(y_{j}\right)_{(1 \leq j \leq P)} \quad f=\left(f_{j}\right)_{(1 \leq j \leq P)}$
- $f(x)-f(x+h)=\operatorname{grad} f(x) \cdot h+o(\|h\|)$
- $d y=\operatorname{grad} f(x) \cdot d x=\frac{\partial f}{\partial x}(x) \cdot d x=\frac{\partial y}{\partial x} \cdot d x \quad$ (locally linear)
- $d y_{j}=\sum_{i=1}^{i=n} \frac{\partial f_{j}}{\partial x_{i}}(x) \cdot d x_{i}=\sum_{i=1}^{i=n} \frac{\partial y_{j}}{\partial x_{i}} \cdot d x_{i}$
- $x, d x, y, d y, f(x)$ and h are all "regular" vectors;
- $\frac{\partial y}{\partial x}$ is a matrix (Jacobian of $f: J_{i j}=\left(\frac{\partial y}{\partial x}\right)_{i j}=\frac{\partial y_{j}}{\partial x_{i}}=\frac{\partial f_{j}}{\partial x_{i}}(x)$).

Differential of a composed function vector inputs and vector outputs

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow y=f(x)$
- $g: \mathbb{R}^{P} \rightarrow \mathbb{R}^{Q}: y \rightarrow z=g(y)$
- $x=\left(x_{i}\right)_{(1 \leq i \leq N)} \quad y=\left(y_{j}\right)_{(1 \leq j \leq P)}$
- $d z=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \cdot d x$
- $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$
(matrix multiplication: non commutative!)
- $x, d x, y, d y, z, d z, f(x)$ and $g(y)$ are all regular vectors;
- $\frac{\partial y}{\partial x}, \frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ are all matrices (f, g and $g o f$ Jacobians).

Differential of a composed function vector inputs and scalar output

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}: x \rightarrow y=f(x)$
- $g: \mathbb{R}^{P} \rightarrow \mathbb{R} \quad: y \rightarrow z=g(y)$
- $x=\left(x_{i}\right)_{(1 \leq i \leq N)}$

$$
y=\left(y_{j}\right)_{(1 \leq j \leq P)}
$$

(left row vector \times matrix mult. \rightarrow row vector)

- $z, d z$ and $g(y)$ are scalars;
- $x, d x, y, d y$, and $f(x)$ are regular vectors;
- $\frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ are transpose (row) vectors (f and gof gradients);
- $\frac{\partial y}{\partial x}$ is a matrix (f Jacobian).

Error back-propagation

- Minimization of $E_{S}(W)$ by gradient descent:
- The gradient indicate an ascending direction: move in the opposite
- Randomly initialize W (0)
- Iterate $W(t+1)=W(t)-\eta \frac{\partial E}{\partial W}(W(t)) \quad \eta=f(t)$ or $\left(\frac{\partial^{2} E}{\partial W^{2}}(W(t))\right)^{-1}$
$-\frac{\partial E}{\partial W}=\left(\frac{\partial E}{\partial W_{1}}, \frac{\partial E}{\partial W_{2}} \ldots \frac{\partial E}{\partial W_{N}}\right) \quad\left(W=\left(W_{1}, W_{2} \ldots W_{N}\right)\right)$
- Back-propagation: $\frac{\partial E}{\partial W_{n}}$ is computed by backward recurrence from $\frac{\partial F_{n}}{\partial W_{n}}$ and $\frac{\partial F_{n}}{\partial X_{n-1}} \quad$ applying iteratively $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) . f^{\prime}$
- Two derivatives, relative to weight and to data to be considered

Stochastic gradient descent and batch processing

- $E(W)=\sum_{i}\left(F\left(W, I_{i}\right)-O_{i}\right)^{2}=\sum_{i} E_{i}(W)$
- $W(t+1)=W(t)-\eta(t) \frac{\partial E}{\partial W}(t)=W(t)-\sum_{i} \eta(t) \frac{\partial E_{i}}{\partial W}(t)$
- Global update (epoch): sum of per sample updates
- Classical GD: update W globally after all I samples have been processed ($1 \leq i \leq I$)
- Stochastic GD: update W after each processed sample \rightarrow immediate effect, faster convergence
- Batch: update W after a given number (typically between 32 and 256) of processed samples \rightarrow parallelism

Learning rate evolution

- $W(t+1)=W(t)-\eta(t) \frac{\partial E}{\partial W}(W(t))$
- Large learning rate: instability
- Small learning rate: very slow convergence
- Variable learning rate: learning rate decay policy
- Most often: step strategy: iterate "constant during a number of epochs, then divide by a given factor"
- Possibly different learning rates for different layers or for different types of parameters, generally with common evolution

Error back-propagation (adapted from Yann LeCun)

Forward pass Data backward pass Param backward pass

Error back-propagation 0: Prediction mode

Forward pass

Forward pass, for $1 \leq n \leq N$:
$X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$

Error back-propagation 1: loss function

Forward pass, for $1 \leq n \leq N$:
$X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$
Loss function (for one sample):
$E=C\left(X_{N}, O\right)$
$E(W, I, O)=C(F(W, I), O)$
Sum over the whole training set or over a batch of samples:
$E(W)=\sum_{i} E\left(W, I_{i}, O_{i}\right)$
Same W, different $\left(I_{i}, O_{i}\right)$

Update:
$W=W-\eta \frac{\partial E(W)}{\partial W}$

Error back-propagation 2: Data backward pass

Forward pass, for $1 \leq n \leq N$:
$X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$
$E=C\left(X_{N}, O\right)$
We need gradients with respect to X_{n}. For N :

$$
\frac{\partial E}{\partial X_{N}}=\frac{\partial C\left(X_{N}, O\right)}{\partial X_{N}}
$$

Then backward recurrence:

$$
\frac{\partial E}{\partial X_{n-1}}=\frac{\partial E}{\partial X_{n}} \frac{\partial F_{n}\left(W_{n}, X_{n-1}\right)}{\partial X_{n-1}}
$$

Error back-propagation 3: Parameter backward pass

Forward pass Data backward pass Param backward pass

Forward pass, for $1 \leq n \leq N$:
$X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$
$E=C\left(X_{N}, O\right)$
We need gradients with respect to X_{n}. For N :

$$
\frac{\partial E}{\partial X_{N}}=\frac{\partial C\left(X_{N}, O\right)}{\partial X_{N}}
$$

Then backward recurrence:
$\frac{\partial E}{\partial X_{n-1}}=\frac{\partial E}{\partial X_{n}} \frac{\partial F_{n}\left(W_{n}, X_{n-1}\right)}{\partial X_{n-1}}$
Gradients with respect to W_{n}.
For $1 \leq n \leq N$:
$\frac{\partial E}{\partial W_{n}}=\frac{\partial E}{\partial X_{n}} \frac{\partial F_{n}\left(W_{n}, X_{n-1}\right)}{\partial W_{n}}$
2021-2022

Error back-propagation 4: Accumulate and update

Forward pass Data backward pass Param backward pass

Forward pass, for $1 \leq n \leq N$:
$X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$
$E=C\left(X_{N}, O\right)$

Gradients with respect to W_{n}. For $1 \leq n \leq N$:
$\frac{\partial E}{\partial W_{n}}=\frac{\partial E}{\partial X_{n}} \frac{\partial F_{n}\left(W_{n}, X_{n-1}\right)}{\partial W_{n}}$
Accumulate gradients and update parameters.
For $1 \leq n \leq N$:
$W_{n}=W_{n}-\eta \sum_{i} \frac{\partial E}{\partial W_{n}}\left(W, I_{i}, O_{i}\right)$
Usually on batches

Error back-propagation: simplified notations

Forward pass Data backward pass Param backward pass

Forward pass, for $1 \leq n \leq N$:
$X_{n}=F_{n}\left(W_{n}, X_{n-1}\right)$
$E=C\left(X_{N}, O\right)$
We need gradients with respect to X_{n}. For N :
$\frac{\partial E}{\partial X_{N}}=\frac{\partial C}{\partial X_{N}}$
Then backward recurrence:
$\frac{\partial E}{\partial X_{n-1}}=\frac{\partial E}{\partial X_{n}} \frac{\partial X_{n}}{\partial X_{n-1}}$
Gradients with respect to W_{n}. For $1 \leq n \leq N$:
$\frac{\partial E}{\partial W_{n}}=\frac{\partial E}{\partial X_{n}} \frac{\partial X_{n}}{\partial W_{n}}$

Layer module (adapted from Yann LeCun)

Notes: $X_{\text {in }} \equiv X_{n-1}, X_{\text {out }} \equiv X_{n}, W \equiv W_{n}$ and $F \equiv F_{n}$ for $1 \leq n \leq N$

Layer module (adapted from Yann LeCun)

Layer module (adapted from Yann LeCun)

Gradient back-propagation rule:

The gradient relative to the input (either W or $X_{\text {in }}$) is equal to the gradient relative to the output ($X_{\text {out }}$) times the Jacobian of the transfer function (respectively $\frac{\partial X_{\text {out }}}{\partial W}$ or $\frac{\partial X_{\text {out }}}{\partial X_{\text {in }}}$, left vector multiplication)

$$
\begin{aligned}
& \frac{\partial F\left(W, X_{\text {in }}\right)}{\partial X_{\text {in }}} \equiv \frac{\partial X_{\text {out }}}{\partial X_{\text {in }}} \\
& \frac{\partial F\left(W, X_{\text {in }}\right)}{\partial W} \equiv \frac{\partial X_{\text {out }}}{\partial W}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial X_{\text {in }}} & =\frac{\partial E}{\partial X_{\text {out }}} \frac{\partial X_{\text {out }}}{\partial X_{\text {in }}} \\
\frac{\partial E}{\partial W} & =\frac{\partial E}{\partial X_{\text {out }}} \frac{\partial X_{\text {out }}}{\partial W}
\end{aligned}
$$

Linear module (adapted from Yann LeCun)

Note: $X_{\text {in }}$ and $X_{\text {out }}$ are regular (column) vectors and W is a matrix while $\partial E / \partial X_{\text {in }}$ and $\partial E / \partial X_{\text {out }}$ are transpose (row) vectors, this is because $\mathrm{d} E=(\partial E / \partial X) \cdot \mathrm{d} X$. $\partial E / \partial W$ is a transposed matrix which is the outer product of the regular and transpose vectors $X_{\text {in }}$ and $\partial E / \partial X_{\text {out }}$.

Pointwise module (adapted from Yann LeCun)

Notes: B is a bias vector on the input. $X_{\text {in }}, X_{\text {out }}$ and B are regular (column) vectors all of the same size while $\partial E / \partial X_{i n}$ and $\partial E / \partial X_{\text {out }}$ and $\partial E / \partial B$ are transpose vectors also of the same size. f is a scalar function applied pointwise on $X_{i n}+B . f^{\prime}$ is the derivative of f and is also applied pointwise. The multiplication by $\left(f^{\prime}\left(X_{i n}+B\right)\right)^{T}$ is also performed pointwise (Hadamard product denoted "o" here).

Non-linear functions

- Sigmoid: $z=\frac{1}{1+e^{y}}$
- Hyperbolic tangent: $z=\tanh y$
- Rectified Linear Unit (ReLU): $z=\max (0, y)$
- Programmable ReLU (PReLU) : $z=\max (\alpha y, y)$ with α learned (i.e. $\alpha \subset W$)
- Appropriate non-linear functions leads to better performance and/or faster convergence
- Avoid vanishing / exploding gradients

Neural Networks in practice

- Good news is that autograd automatically and transparently takes care of gradients computation and propagation; you just have to call .backward()
- You only have to define the forward network sequence
- You still have to select various hyper-parameters and to organize:
- iterations
- batch processing
- learning rate schedule
- possibly data augmentation

Classical Image classification

Descriptors

Color Histograms Gabor Transforms Bags of SIFTs Fisher Vectors

Plus: multiple features, early or late fusion, re-scoring ...

Classical Image classification

Still classical since 3-layer MLPs are at least 30 years old

Deep "end-to-end" Image classification

- Fuzzy boundary between feature extraction and classification even if there is a transition between convolutional and fully connected layers
- End-to-end learning: features (descriptors) themselves are learned (by gradient descent) too, not engineered
- Possible only via the use of convolutional layers

Convolutional layers (2D grid case)

- Alternative to the "all to all"(vector to vector) connections
- Preserves the 2D image topology via "feature maps"
- X_{n} are 3D data ("tensors") instead of vectors
- 2 of the dimensions are aligned with the image grid
- The third dimension is a set of values associated to a grid location (gathered in a vector per location but without associated topology)
- Each component in the third dimension correspond to a "map" aligned with the image grid
- Each data tensor is a "stack" of features maps
- Translation-invariant (relatively to the grid) processing

3D tensor data (2D grid case)

Input image data is a special case with 3 feature maps corresponding to the RGB planes and sometimes 4 or even more for RGB-D or for hyper-spectral (satellite) image data.

Convolutional layers (2D grid case)

- Each map point is connected to all maps points of a fixed size neighborhood in the previous layer
- Weights between maps are shared so that they are invariant by translation

Convolutional layers (2D grid case)

- Combination of:
-convolutions within the image plane
-"all to all" within the map dimension
- Separable or non-separable combinations
- Resolution changes across layers: stride and pooling
- Example: AlexNet

Classical image convolution (2D to 2D)

- Classical image convolution (2D to 2D):

$$
O(i, j)=(K * I)(i, j)=\sum_{(m, n)} K(m, n) I(i-m, j-n)
$$

- Convolutional layer (3D to 3D):
- m and n : within a window around the current location, corresponding to the filter size
- $K(m, n)$: convolution kernel
- Example: (circular) Gabor filter:

$$
K(m, n)=\frac{1}{2 \pi \sigma^{2}} \cdot e^{-\frac{m^{2}+n^{2}}{2 \sigma^{2}}} \cdot e^{2 \pi i \frac{m \cdot \cos \theta+n \cdot \sin \theta}{\lambda}}
$$

Classical image convolution (2D to 2D)

3×3 convolution, no stride, half padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Classical image convolution (2D to 2D)

3×3 convolution, no stride, no padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Classical image convolution (2D to 2D)

3×3 convolution, no stride, full padding
Animation from https://github.com/vdumoulin/conv_arithmetic/

Convolutional layers

- Set of image convolution (2D to 3D):
$O(l, i, j)=(K(l) * I)(i, j)=\sum_{(m, n)} K(l, m, n) I(i-m, j-n)$
- Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias): $O(l, i, j)=B(l)+\sum_{(k, m, n)} K(k, l, m, n) I(k, i-m, j-n)$
- k and l : indices of the feature maps in the input and output layers
- m and n : within a window around the current location, corresponding to the feature size

Convolutional layers

- Convolutional layer: multiple maps (planes) both in input and output (3D to 3D, plus bias):
$O(l, i, j)=B(l)+\sum_{(k, m, n)} K(k, l, m, n) I(k, i-m, j-n)$
- Operation relative to (m, n) : convolution
- Operation relative to (k, l) : matrix multiplication plus bias (equals affine transform)
- Combination of:
- Convolution within the image plane, image topology
- Classical all to all "perpendicularly" to the image plane, no topology
- If image size and filter size = 1: fully connected "all to all"

Convolutional layers (3D to 3D)

2 (input) $\times 3 \times 3 \times 3$ (output) convolution, no stride, no padding
Illustration from https://arxiv.org/abs/1603.07285

AlexNet (ImageNet Challenge 2012)

[Krizhevsky et al., 2012]

- 7 hidden layers, 650K units, 60M parameters (W)
- GPU implementation (50× speed-up over CPU)
- Trained on two GTX580-3GB GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Convolutional layers

- The convolution layer kernel is: $(D+2)$-dimensional for D dimensional input data, e.g. $D=2$ for still images, $D=3$ for video segments or scanner images.
- For color images, the RGB (or YUV or HSV ...) planes directly enter the first layer as a 3D volume of size width \times height $\times 3$
- There is one unit (neuron) per "pixel" in the output D-dimensional topology and per output feature map
- Unit set: set of units associated to a D-dimensional grid location, one unit per output feature map, one set per grid location
- There is a single translation-invariant $(D+2)$-dimensional kernel per layer for mapping input pixel vectors to output pixel vectors at all D-dimensional grid locations

AlexNet "conv5" example

- Number of units ("neurons") in a layer (= size of the output tensor): output image width (13) \times output image height (13) \times number of output planes $(256)=43,264$
- Number of weights in a layer (= number of weights in a layer): number of input planes (384) \times number of output planes (256) \times filter width (3) \times filter height $(3)=884,736$ (884,992 including biases)
- Number of connections: number of grid locations \times number of weights in a unit set (excluding biases) $=149,520,384$

Resolution changes and side effects

- Side (border) effect:
- crop the output "image" relative to the input one and/or
- pad the image if the filter expand outside
- Resolution change (generally reduction):
- Stride: subsample, e.g. compute only one out of N, and/or
- Pool: compute all and apply an associative operator to compute a single value for the low resolution location from the high resolution ones
- Common pooling operators: maximum or average
- Pooling correspond to a separate back-propagation module (as the linear and non-linear parts of a layer)

Dropout

- Regularization technique
- During training, at each epoch, neutralize a given (typically 0.2 to 0.5) proportion of randomly selected connections
- During prediction, keep all of them with a multiplicative compensating factor
- Avoid concentration of the activation on particular connections
- Much more robust operation
- Faster training, better performance

Softmax

- Normalization of output as probabilities (positive values summing to 1) for the multiclass problem (i.e. target categories are mutually exclusive)
- $z_{i}=\frac{e^{y_{i}}}{\sum_{j} e^{y_{j}}}$
- Not suited for the multi-label case (i.e. target categories are not mutually exclusive)
- Associated loss function is cross-entropy

Cross-entropy loss (multi-class)

- p_{i} : probability vector for class i
- l_{i} : truth value for class i ("one hot encoding")
- $L=\sum_{i}-\left(l_{i} \log p_{i}\right)$
- For exclusive classes, l_{i} is equal to 1 only for the right class i_{0} and to 0 otherwise:
- $L=-\log p_{i_{0}} \quad(\log 1=0$ and $\log 0=-\infty)$
- Forces $p_{i_{0}}$ to be close to 1 , very high loss value if $p_{i_{0}}$ is close to $0 \rightarrow$ faster convergence
- Other p_{i} indirectly forced to be close to 0 because the p_{i} S sums to 1
- With softmax: forces $y_{i_{0}}$ to be greater than the other $y_{i} \mathrm{~s}$

Cross-entropy loss (multi-label)

- Non-exclusive categories are called labels and are seen as independent, each with two-classes
- p_{i} : probability vector for label i
- l_{i} : truth value for label i (either 0 or 1)
- Sigmoid "normalization": $p_{i}=\frac{1}{1+e^{-y_{i}}}$ and $1-p_{i}=\frac{1}{1+e^{y_{i}}}$
- $L=\sum_{i}-\left(l_{i} \log p_{i}+\left(1-l_{i}\right) \log \left(1-p_{i}\right)\right)$
- Same formula as for multi-class with a two-class problem for each label
- Sum of CE Losses per label
- Note: works also if l_{i} has non-binary values (probabilities of the true distribution)

Yann LeCun recommendations

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
- But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
- Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

"Recent" trends

- VGG and GoogLeNet (16-19 and 22 layers)
- Residual networks (152 layers with "shortcuts")
- Stochastic depth networks (up to 1202 layers)
- Dense Networks
- Weakly supervised / unsupervised learning
- Generative adversarial networks
- Segmentation networks
- Multimodal embeddings

VGG Network (very deep)

Simonyan and Zisserman, Andrew: Very Deep Convolutional Networks for Large-Scale Image Recognition, CVPR 2014.

Residual networks (ultra deep)

Ultra deep network with "shortcuts"
He, Zhang, Ren and Sun: Deep Residual Learning for Image Recognition, CVPR 2015

Dense networks

All layers connected to all layers

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

Dense networks

A deep DenseNet with three dense blocks The layers between blocks are transition layers that change the resolution via convolution and pooling

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

Feed-forward network on a sequence

Independent predictions: no history
Training on samples
Only two linear layers here: not deep (usually more)

Simple recurrent network (Elman)

Sequence (past) history is represented in the hidden states Training on sequences (unfolded loop)
Back-propagation through many hidden states: deep

Simple recurrent network (Jordan)

Sequence (past) history is represented in the hidden states Training on sequences (unfolded loop)
Back-propagation through many hidden states: deep

Folded (usual) representations

Elman

Jordan

Recurrent neural networks

- Perform sequence-to-sequence transformations
- Learns patterns in sequences
- Used in speech and in natural language processing
- Used in video processing (action recognition)
- Simple RNNs have limitations (unstable gradients)
- Variants with "memory cells":
- Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
- Gated Recurrent Units (Cho et al., 2014) (simplified LSTM)
- Avoid exploding or vanishing gradients on long sequences
- Can "count"

Word embeddings

- Map words in a D-dimensional space with semantic distances and relations roughly preserved

From
 Mikolov, 2013
 (Word2Vec)

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

Word2Vec (Mikolov et al., 2013)

- Words are represented by "1-hot encoding"
- Encoder-decoder architectures
- Encoder: V dims to D dims linear map(s)
- Decoder: D dims to V dims linear map(s)
- V: vocabulary size, D: embedding size
- Two variants:
- CBOW: predict single words from their neighbors
- Skip-gram: predict neighbors from single words (better)
- The intermediate representation is the embedding
- Unsupervised learning: from huge amounts of raw data
- Learning by gradient descent

Word2Vec skip grams

1 encoding matrix 4 decoding matrices

All source and target vectors are 1-hot encoded

