
Georges Quénot M2-MOSIG-IAR 2020-2021 1

Multimedia Indexing and Retrieval

Deep Learning for multimedia indexing and retrieval

Georges Quénot

Multimedia Information Modeling and Retrieval Group

Laboratory of Informatics of Grenoble

Georges Quénot M2-MOSIG-IAR 2020-2021 2

Outline

• Introduction

• Machine learning

• Loss function

• Formal neuron

• Single layer perceptron

• Multilayer perceptron

• Reminders about differential calculus

• Back-propagation

• Learning rate

• Mini-batches

• Convolutional layers

• Pooling, softmax …

Georges Quénot M2-MOSIG-IAR 2020-2021 3

Georges Quénot M2-MOSIG-IAR 2020-2021 4

ImageNet Classification 2012 Results

Krizhevsky et al. – 16.4% error (top-5)
Next best (Pyr. FV on dense SIFT) – 26.2% error

Georges Quénot M2-MOSIG-IAR 2020-2021 5

ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

• 1000 visual “fine grain” categories / labels (exclusive)

• 150,000 test images (hidden “ground truth”)

• 50,000 validation images

• 1,200,000 training images

• Each training, validation or test image falls within exactly one

of the 1000 categories

• Task: for each image in the test set, rank the categories

from most probable to least probable

• Metric: top-5 error rate: percentage of images for which the

actual category is not in the five first ranked categories

• Held from 2010 to 2015, frozen since 2012

Georges Quénot M2-MOSIG-IAR 2020-2021 6

ImageNet Classification 2013 Results

http://www.image-net.org/challenges/LSVRC/2013/results.php

Demo: http://www.clarifai.com/

http://www.image-net.org/challenges/LSVRC/2013/results.php
http://www.clarifai.com/

Georges Quénot M2-MOSIG-IAR 2020-2021 7

For comparison, human performance is 5.1% (Russakovsky et al.)

Going deeper and deeper

Georges Quénot M2-MOSIG-IAR 2020-2021 8

Deep Convolutional Neural Networks

• Decades of algorithmic improvements in neural networks

(Stochastic Gradient Descent, initialization, momentum …)

• Very large amounts of properly annotated data (ImageNet)

• Huge computing power (Teraflops × weeks): GPU!

• Convolutional networks

• Deep networks (3 layers)

• ReLU (Rectified Linear Unit) activation functions

• Batch normalization

• Drop Out

• …

Georges Quénot M2-MOSIG-IAR 2020-2021 9

Deep Learning is (now) EASY

• Maths: linear algebra and differential calculus (training only)

– 𝑌 = 𝐴. 𝑋 + 𝐵 (with tensor extension)

– 𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 . ℎ + 𝑜 ℎ (with multidimensional variables)

– 𝑔 𝑜 𝑓 ′ 𝑥 = 𝑔′𝑜 𝑓 𝑥 . 𝑓′ 𝑥 (recursively applied)

• Tools: amazingly integrated, effective and easy to use packages

– Mostly python interface

– Autograd packages: only need to care of the linear algebra part

• Get started with:

– 3-hour course

– 1-hour PyTorch tutorial (familiarity with python assumed)

Georges Quénot M2-MOSIG-IAR 2020-2021 10

Supervised learning

• A machine learning technique for creating a function from training
data.

• The training data consist of pairs of input objects (typically vectors)
and desired outputs.

• The output of the function can be a continuous value (regression)
or a class label (classification) of the input object.

• The task of the supervised learner is to predict the value of the
function for any valid input object after having seen a number of
training examples (i.e. pairs of input and target output).

• To achieve this, the learner has to generalize from the presented
data to unseen situations in a “reasonable” way.

• The parallel task in human and animal psychology is often referred
to as concept learning (in the case of classification).

• Most commonly, supervised learning generates a global model
that helps mapping input objects to desired outputs.

(http://en.wikipedia.org/wiki/Supervised_learning)

Georges Quénot M2-MOSIG-IAR 2020-2021 11

Supervised learning

• Target function: f : X Y
x y = f(x)

– x : input object (typically vector)

– y : desired output (continuous value or class label)

– X : set of valid input objects

– Y : set of possible output values

• Training data: S = (xi,yi)(1 i I)

– I : number of training samples

• Learning algorithm: L : (X×Y)* YX

S f = L(S)

• Regression or classification system: y = f(x) = [L(S)](x) = g(S,x)

((X×Y)* = nN (X×Y)n)

Georges Quénot M2-MOSIG-IAR 2020-2021 12

Parametric supervised learning

• Parameterized function: 𝑓: ℝ𝑚 YX

𝜃 𝑓𝜃

• 𝑓 is a “meta” function or a family of function

• Target function: 𝑓𝜃 : X Y
x y = 𝑓𝜃 (x)

– X : set of valid input objects (ℝ𝑑)

– Y : set of possible output values (ℝ𝑐)

• Training data: S = (xi,yi)(1 i I)

– I : number of training samples

• Learning algorithm: 𝐿𝑓 : (X×Y)* ℝ𝑚 (learns 𝜃 from S)
S 𝜃 = 𝐿𝑓 (S)

• Regression or classification system: 𝑦 = 𝑓𝜃 𝑥 = 𝑓 𝜃, 𝑥

Georges Quénot M2-MOSIG-IAR 2020-2021 13

Single-label loss function

• Quantifies the cost of classification error or the

“empirical risk”

• Example (Mean Square Error): 𝐸𝑆 𝑓 = 𝑖=1
𝑖=𝐼 (𝑓 𝑥𝑖 − 𝑦𝑖)

2

• If 𝑓 depends on a parameter vector (L learns):

𝐸𝑆 =
1

2
 𝑖=1
𝑖=𝐼 (𝑓 , 𝑥𝑖 − 𝑦𝑖)

2

• For a linear SVM with soft margin, = 𝑤, 𝑏 :

𝐸𝑆 =
1

2
𝑤 2 + 𝐶. 𝑖=1

𝑖=𝐼 max(0,1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏)

• The learning algorithm aims at minimizing the

empirical risk:
∗ = argmin

𝐸𝑆

Georges Quénot M2-MOSIG-IAR 2020-2021 14

Multi-label loss function

• Predict 𝑃 labels for each data sample 𝑥

• 𝑃 decision functions : f = (fp)(1 p P)

• Example with 𝑓 depending on a parameter vector:

𝐸𝑆 =
1

2
 𝑖=1
𝑖=𝐼 𝑝=1

𝑝=𝑃
(𝑓𝑝 , 𝑥𝑖 − 𝑦𝑖𝑝)

2 =
1

2
 𝑖=1
𝑖=𝐼 (𝑓 , 𝑥𝑖 − 𝑦𝑖)

2

(same as single label case with Euclidean distance

between vectors of predictions and vectors of labels)

• ∗ = argmin

𝐸𝑆

• The fp functions may take any real value

Georges Quénot M2-MOSIG-IAR 2020-2021 15

Formal neural or unit (two sub-units)

𝑦 =

𝑗

𝑤𝑗𝑥𝑗 = 𝑤. 𝑥

z

x1

x2

x3

x4

x5

𝑧 = 𝜎 𝑦 + 𝑏 =
1

1 + 𝑒𝑦+𝑏

linear combination sigmoid function

w,b

𝑥 : column vector
𝑤 : row vector

𝑦, 𝑏, 𝑧 : scalars

linear and vector part non-linear and scalar part

Georges Quénot M2-MOSIG-IAR 2020-2021 16

Neural layer (all to all, two sub-layers)

𝑦𝑖 =

𝑗

𝑤𝑖𝑗𝑥𝑗 𝑧𝑖 = 𝑦𝑖 + 𝑏𝑖 =
1

1 + 𝑒𝑦𝑖+𝑏𝑖

matrix-vector multiplication per component operation

𝑌 = 𝑊.𝑋 𝑧 = 𝑌 + 𝐵

z1

x1

x2

x3

x4

x5

z2

z3

w1,b1

w2,b2

w3,b3

W,B

Georges Quénot M2-MOSIG-IAR 2020-2021 17

Multilayer perceptron (all to all)

o1i1

i2

input
layer

output
layer

i3

i4

o2

o3

o4

hidden
layer

I=X0 X3=OX1 X2

W1,B1 W2,B2 W3,B3

Georges Quénot M2-MOSIG-IAR 2020-2021 18

Multilayer perceptron (all to all)

𝑌1 = 𝑊1. 𝑋0 = 𝐹1 𝑊1, 𝑋0

o1i1

i2

i3

i4

o2

o3

o4

I=X0 X3=OX1 X2

W1,B1 W2,B2 W3,B3

𝑋1 = 𝑌1 + 𝐵1 = 𝐺1 𝐵1, 𝑌1

𝑌2 = 𝑊2. 𝑋1 = 𝐹2 𝑊2, 𝑋1 𝑋2 = 𝑌2 + 𝐵2 = 𝐺2 𝐵2, 𝑌2
𝑌3 = 𝑊3. 𝑋3 = 𝐹3 𝑊3, 𝑋2 𝑋3 = 𝑌3 + 𝐵3 = 𝐺3 𝐵3, 𝑌3

𝑂 = 𝑋3 = 𝐺3 𝐵3, 𝐹3 𝑊3, 𝐺2 𝐵2, 𝐹2 𝑊2, 𝐺1 𝐵1, 𝐹1 𝑊1, 𝑋0 = 𝐼

𝑂 = 𝐺3 𝐵3 𝑜 𝐹3 𝑊3 𝑜 𝐺2 𝐵2 𝑜 𝐹2 𝑊2 𝑜 𝐺1 𝐵1 𝑜 𝐹1 𝑊1 (𝐼)

Denoting 𝐹 𝑊 so that 𝐹 𝑊,𝑋 = (𝐹 𝑊) 𝑋 :

Georges Quénot M2-MOSIG-IAR 2020-2021 19

Composition of simple functions

𝑋1 = 𝑊1. 𝑋0 = 𝐹1 𝑊1, 𝑋0 𝑋2 = 𝑋1 +𝑊2 = 𝐹2 𝑊2, 𝑋1

𝑋3 = 𝑊3. 𝑋2 = 𝐹3 𝑊3, 𝑋2 𝑋4 = 𝑋3 +𝑊4 = 𝐹4 𝑊4, 𝑋3
𝑋5 = 𝑊5. 𝑋4 = 𝐹5 𝑊5, 𝑋4 𝑋6 = 𝑋5 +𝑊6 = 𝐹6 𝑊6, 𝑋5

𝑂 = 𝐹6 𝑊6 𝑜 𝐹5 𝑊5 𝑜 𝐹4 𝑊4 𝑜 𝐹3 𝑊3 𝑜 𝐹2 𝑊2 𝑜 𝐹1 𝑊1 𝐼 = 𝑜𝑛=1
𝑛=6 𝐹𝑛 𝑊𝑛 𝐼

X1 X4

W3

i1

i2

i3

i4

I=X0

W1 W2 W4

o1

o2

o3

o4

X6=O

W6W5

X2 X3 X5

linear non-linear linear non-linear linear non-linear

Splitting units and layers, renaming and renumbering:

Georges Quénot M2-MOSIG-IAR 2020-2021 20

Composition of simple functions

Georges Quénot M2-MOSIG-IAR 2020-2021 21

Composition of simple functions

Georges Quénot M2-MOSIG-IAR 2020-2021 22

Feed Forward Network

• Global network definition: 𝑂 = 𝐹 𝑊, 𝐼
(𝐼 ≡ 𝑥 𝑂 ≡ 𝑦 𝐹 ≡ 𝑓 𝑊 ≡ relative to previous notations)

• Layer values: 𝑋0, 𝑋1… 𝑋𝑁
with 𝑋0 = 𝐼 and 𝑋𝑁 = 𝑂 (𝑋𝑛 are vectors)

• Global vector of all unit parameters:

𝑊 = 𝑊1,𝑊2 … 𝑊𝑁
(weights by layer are concatenated, 𝑊𝑛 can matrices or

vectors or any parameter structure, and even possibly

empty)

• Feed forward: 𝑋𝑛+1 = 𝐹𝑛+1 𝑊𝑛+1, 𝑋𝑛

• Possibly “joins” and “forks” (but no cycles)

Georges Quénot M2-MOSIG-IAR 2020-2021 23

Error back-propagation

• Training set: 𝑆 = 𝐼𝑖 , 𝑂𝑖 1≤𝑖≤𝐼 input-output samples

• 𝑋𝑖,0 = 𝐼𝑖 and 𝑋𝑖,𝑛+1 = 𝐹𝑛+1 𝑊𝑛+1, 𝑋𝑖,𝑛

• Note: regarding this notation the vector-matrix

multiplication counts as one layer and the element-wise

non-linearity counts as another one (not mandatory but

greatly simplifies the layer modules’ implementation)

• Error (empirical risk) on the training set:

𝐸 𝑊 = 𝑖 𝐹 𝑊, 𝐼𝑖 − 𝑂𝑖
2 = 𝑖 𝑋𝑖,𝑁 − 𝑂𝑖

2

• Minimization of 𝐸 𝑊 by gradient descent

Georges Quénot M2-MOSIG-IAR 2020-2021 24

Gradient descent

Georges Quénot M2-MOSIG-IAR 2020-2021 25

Error back-propagation

• Minimization of 𝐸𝑆 𝑊 by gradient descent:

– The gradient indicate an ascending direction: move in the opposite

– Randomly initialize 𝑊 0

– Iterate 𝑊 𝑡 + 1 = 𝑊 𝑡 −
𝜕𝐸

𝜕𝑊
𝑊 𝑡 = 𝑓 𝑡 or

𝜕2𝐸

𝜕𝑊2
𝑊 𝑡

−1

–
𝜕𝐸

𝜕𝑊
=
𝜕𝐸

𝜕𝑊1
,
𝜕𝐸

𝜕𝑊2
…
𝜕𝐸

𝜕𝑊𝑁
(𝑊 = 𝑊1,𝑊2 … 𝑊𝑁)

– Back-propagation:
𝜕𝐸

𝜕𝑊𝑛
is computed by backward recurrence from

𝜕𝐹𝑛

𝜕𝑊𝑛
and

𝜕𝐹𝑛

𝜕𝑋𝑛−1
applying iteratively 𝑔 𝑜 𝑓 ′ = 𝑔′𝑜 𝑓 . 𝑓′

– Two derivatives, relative to weight and to data to be considered

Georges Quénot M2-MOSIG-IAR 2020-2021 26

Differential of a function
scalar input and scalar output

• 𝑓 ∶ ℝℝ ∶ 𝑥 𝑓 𝑥 𝑓 is differentiable

• 𝑦 = 𝑓 𝑥

• 𝑓 𝑥 − 𝑓 𝑥 + ℎ = 𝑓′ 𝑥 ℎ + 𝑜 ℎ (limℎ0
𝑜 ℎ

ℎ
= 0)

• 𝑑𝑦 = 𝑓′ 𝑥 𝑑𝑥 i.e: 𝑓 is “locally linear”

•
𝑑𝑦

𝑑𝑥
≡ 𝑓′ 𝑥 (notation)

• 𝑑𝑦 =
𝑑𝑦

𝑑𝑥
𝑑𝑥 (“local scale factor”)

• All values are scalar

Georges Quénot M2-MOSIG-IAR 2020-2021 27

Differential of a composed function
scalar input and scalar output

• 𝑓 ∶ ℝℝ ∶ 𝑥 𝑓 𝑥 𝑓 is differentiable

• 𝑦 = 𝑓 𝑥

• 𝑔 ∶ ℝℝ ∶ 𝑦 𝑔 𝑦 𝑔 is differentiable

• 𝑧 = 𝑔 𝑦

• 𝑔 𝑜 𝑓 ′ 𝑥 = 𝑔′𝑜 𝑓 𝑥 . 𝑓′ 𝑥 = 𝑔′ 𝑦 . 𝑓′ 𝑥

• 𝑑𝑦 =
𝑑𝑦

𝑑𝑥
𝑑𝑥 𝑑𝑧 =

𝑑𝑧

𝑑𝑦
𝑑𝑦

• 𝑑𝑧 =
𝑑𝑧

𝑑𝑦
·
𝑑𝑦

𝑑𝑥
𝑑𝑥

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
·
𝑑𝑦

𝑑𝑥

Georges Quénot M2-MOSIG-IAR 2020-2021 28

Differential of a function of a vector
vector input and scalar output

• 𝑓 ∶ ℝ𝑁ℝ ∶ 𝑥 𝑓 𝑥 𝑓 is differentiable

• 𝑦 = 𝑓 𝑥 x = (xi)(1 i N)

• 𝑓 𝑥 − 𝑓 𝑥 + ℎ = grad 𝑓 𝑥 . ℎ + 𝑜 ℎ

• 𝑑𝑦 = grad 𝑓 𝑥 . 𝑑𝑥 = 𝑖=1
𝑖=𝑛 𝜕𝑓

𝜕𝑥𝑖
𝑥 . 𝑑𝑥𝑖 = 𝑖=1

𝑖=𝑛 𝜕𝑦

𝜕𝑥𝑖
. 𝑑𝑥𝑖 =

𝜕𝑦

𝜕𝑥
. 𝑑𝑥

•
𝜕𝑦

𝜕𝑥
≡
𝜕𝑓

𝜕𝑥
𝑥 = grad 𝑓 𝑥

𝜕𝑦

𝜕𝑥𝑖
≡
𝜕𝑓

𝜕𝑥𝑖
𝑥 (notations)

• 𝑦, 𝑑𝑦 and 𝑓(𝑥) are scalars;

• 𝑥, 𝑑𝑥 and ℎ are “regular” (column) vectors;

•
𝜕𝑦

𝜕𝑥
is a transpose (row) vector.

Georges Quénot M2-MOSIG-IAR 2020-2021 29

Differential of a vector function of a vector
vector input and vector output

• 𝑓 ∶ ℝ𝑁ℝ𝑃 ∶ 𝑥 𝑓 𝑥 𝑓 is differentiable

• 𝑦 = 𝑓 𝑥 x = (xi)(1 i N) y = (yj)(1 j P) f = (fj)(1 j P)

• 𝑓 𝑥 − 𝑓 𝑥 + ℎ = grad 𝑓 𝑥 . ℎ + 𝑜 ℎ

• 𝑑𝑦 = grad 𝑓 𝑥 . 𝑑𝑥 =
𝜕𝑓

𝜕𝑥
𝑥 . 𝑑𝑥 =

𝜕𝑦

𝜕𝑥
. 𝑑𝑥 (locally linear)

• 𝑑𝑦𝑗 = 𝑖=1
𝑖=𝑛 𝜕𝑓𝑗

𝜕𝑥𝑖
𝑥 . 𝑑𝑥𝑖 = 𝑖=1

𝑖=𝑛 𝜕𝑦𝑗

𝜕𝑥𝑖
. 𝑑𝑥𝑖

• 𝑥, 𝑑𝑥, 𝑦, 𝑑𝑦, 𝑓(𝑥) and ℎ are all “regular” vectors;

•
𝜕𝑦

𝜕𝑥
is a matrix (Jacobian of 𝑓: 𝐽𝑖𝑗 =

𝜕𝑦

𝜕𝑥 𝑖𝑗
=
𝜕𝑦𝑗

𝜕𝑥𝑖
=
𝜕𝑓𝑗

𝜕𝑥𝑖
𝑥).

Georges Quénot M2-MOSIG-IAR 2020-2021 30

Differential of a composed function
vector inputs and vector outputs

• 𝑓 ∶ ℝ𝑁ℝ𝑃 ∶ 𝑥 𝑦 = 𝑓 𝑥 𝑓 is differentiable

• 𝑔 ∶ ℝ𝑃ℝ𝑄 ∶ 𝑦 𝑧 = 𝑔 𝑦 𝑔 is differentiable

• x = (xi)(1 i N) y = (yj)(1 j P) z = (zk)(1 k Q)

• 𝑑𝑧 =
𝜕𝑧

𝜕𝑦
·
𝜕𝑦

𝜕𝑥
. 𝑑𝑥

•
𝜕𝑧

𝜕𝑥
=
𝜕𝑧

𝜕𝑦
·
𝜕𝑦

𝜕𝑥
(matrix multiplication: non commutative!)

• 𝑥, 𝑑𝑥, 𝑦, 𝑑𝑦, 𝑧, 𝑑𝑧, 𝑓(𝑥) and 𝑔 𝑦 are all regular vectors;

•
𝜕𝑦

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
and

𝜕𝑧

𝜕𝑥
are all matrices (𝑓, 𝑔 and 𝑔𝑜𝑓 Jacobians).

Georges Quénot M2-MOSIG-IAR 2020-2021 31

Differential of a composed function
vector inputs and scalar output

• 𝑓 ∶ ℝ𝑁ℝ𝑃 ∶ 𝑥 𝑦 = 𝑓 𝑥 𝑓 is differentiable

• 𝑔 ∶ ℝ𝑃ℝ ∶ 𝑦 𝑧 = 𝑔 𝑦 𝑔 is differentiable

• x = (xi)(1 i N) y = (yj)(1 j P) 𝑧 ∈ ℝ

•
𝜕𝑧

𝜕𝑥
=
𝜕𝑧

𝜕𝑦
·
𝜕𝑦

𝜕𝑥
(left row vector × matrix mult. row vector)

• 𝑧, 𝑑𝑧 and 𝑔 𝑦 are scalars;

• 𝑥, 𝑑𝑥, 𝑦, 𝑑𝑦, and 𝑓(𝑥) are regular vectors;

•
𝜕𝑧

𝜕𝑦
and

𝜕𝑧

𝜕𝑥
are transpose (row) vectors (𝑓 and 𝑔𝑜𝑓 gradients);

•
𝜕𝑦

𝜕𝑥
is a matrix (𝑓 Jacobian).

Georges Quénot M2-MOSIG-IAR 2020-2021 32

Error back-propagation

• Minimization of 𝐸𝑆 𝑊 by gradient descent:

– The gradient indicate an ascending direction: move in the opposite

– Randomly initialize 𝑊 0

– Iterate 𝑊 𝑡 + 1 = 𝑊 𝑡 −
𝜕𝐸

𝜕𝑊
𝑊 𝑡 = 𝑓 𝑡 or

𝜕2𝐸

𝜕𝑊2
𝑊 𝑡

−1

–
𝜕𝐸

𝜕𝑊
=
𝜕𝐸

𝜕𝑊1
,
𝜕𝐸

𝜕𝑊2
…
𝜕𝐸

𝜕𝑊𝑁
(𝑊 = 𝑊1,𝑊2 … 𝑊𝑁)

– Back-propagation:
𝜕𝐸

𝜕𝑊𝑛
is computed by backward recurrence from

𝜕𝐹𝑛

𝜕𝑊𝑛
and

𝜕𝐹𝑛

𝜕𝑋𝑛−1
applying iteratively 𝑔 𝑜 𝑓 ′ = 𝑔′𝑜 𝑓 . 𝑓′

– Two derivatives, relative to weight and to data to be considered

Georges Quénot M2-MOSIG-IAR 2020-2021 33

Stochastic gradient descent
and batch processing

• 𝐸 𝑊 = 𝑖 𝐹 𝑊, 𝐼𝑖 − 𝑂𝑖
2 = 𝑖 𝐸𝑖 𝑊

• 𝑊 𝑡 + 1 = 𝑊 𝑡 − 𝑡
𝜕𝐸

𝜕𝑊
𝑡 = 𝑊 𝑡 − 𝑖 𝑡

𝜕𝐸𝑖

𝜕𝑊
𝑡

• Global update (epoch): sum of per sample updates

• Classical GD: update 𝑊 globally after all 𝐼 samples have
been processed (1 ≤ 𝑖 ≤ 𝐼)

• Stochastic GD: update 𝑊 after each processed sample
→ immediate effect, faster convergence

• Batch: update 𝑊 after a given number (typically between
32 and 256) of processed samples → parallelism

Georges Quénot M2-MOSIG-IAR 2020-2021 34

Learning rate evolution

• 𝑊 𝑡 + 1 = 𝑊 𝑡 − 𝑡
𝜕𝐸

𝜕𝑊
𝑊 𝑡

• Large learning rate: instability

• Small learning rate: very slow convergence

• Variable learning rate: learning rate decay policy

• Most often: step strategy: iterate “constant during a
number of epochs, then divide by a given factor”

• Possibly different learning rates for different layers or for
different types of parameters, generally with common
evolution

Georges Quénot M2-MOSIG-IAR 2020-2021 35

Error back-propagation (adapted from Yann LeCun)

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑋𝑁1

𝐸/ 𝑋𝑁

𝐸/ 𝑋1

𝐸/ 𝑊𝑛

𝐸/ 𝑊𝑁

𝐸/ 𝑊1

O

𝐸
A

c
c
u

m
u

la
te

 a
n

d
 u

p
d

a
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)
𝐸 = 𝐶 (𝑋𝑁 , 𝑂)

We need gradients with

respect to 𝑋𝑛. For 𝑁:

𝜕𝐸

𝜕𝑋𝑁
=
𝜕𝐶 𝑋𝑁, 𝑂

𝜕𝑋𝑁

Then backward recurrence:

𝜕𝐸

𝜕𝑋𝑛−1
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑋𝑛−1

Gradients with respect to 𝑊𝑛.
For 1 ≤ 𝑛 ≤ 𝑁:

𝜕𝐸

𝜕𝑊𝑛
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑊𝑛

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 36

Error back-propagation 0: Prediction mode

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

P
a

ra
m

e
te

r
s
to

ra
g

e
Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)

𝑋1

𝑂 = 𝑋𝑁

𝑋𝑛

Forward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 37

Error back-propagation 1: loss function

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

O

𝐸
P

a
ra

m
e

te
r

s
to

ra
g

e
Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)

Loss function (for one sample):

𝐸 = 𝐶 𝑋𝑁 , 𝑂
𝐸 𝑊, 𝐼, 𝑂 = 𝐶 𝐹 𝑊, 𝐼 , 𝑂

Sum over the whole training

set or over a batch of samples:

𝐸 𝑊 =

𝑖

𝐸 𝑊, 𝐼𝑖 , 𝑂𝑖

Same 𝑊, different 𝐼𝑖 , 𝑂𝑖

Update:

𝑊 = 𝑊 − 𝜂
𝜕𝐸 𝑊

𝜕𝑊

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 38

Error back-propagation 2: Data backward pass

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑋𝑁1

𝐸/ 𝑋𝑁

𝐸/ 𝑋1

O

𝐸
P

a
ra

m
e

te
r

s
to

ra
g

e
Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)
𝐸 = 𝐶 (𝑋𝑁 , 𝑂)

We need gradients with

respect to 𝑋𝑛. For 𝑁:

𝜕𝐸

𝜕𝑋𝑁
=
𝜕𝐶 𝑋𝑁, 𝑂

𝜕𝑋𝑁

Then backward recurrence:

𝜕𝐸

𝜕𝑋𝑛−1
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑋𝑛−1

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 39

Error back-propagation 3: Parameter backward pass

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑋𝑁1

𝐸/ 𝑋𝑁

𝐸/ 𝑋1

𝐸/ 𝑊𝑛

𝐸/ 𝑊𝑁

𝐸/ 𝑊1

O

𝐸
P

a
ra

m
e

te
r

s
to

ra
g

e
Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)
𝐸 = 𝐶 (𝑋𝑁 , 𝑂)

We need gradients with

respect to 𝑋𝑛. For 𝑁:

𝜕𝐸

𝜕𝑋𝑁
=
𝜕𝐶 𝑋𝑁, 𝑂

𝜕𝑋𝑁

Then backward recurrence:

𝜕𝐸

𝜕𝑋𝑛−1
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑋𝑛−1

Gradients with respect to 𝑊𝑛.
For 1 ≤ 𝑛 ≤ 𝑁:

𝜕𝐸

𝜕𝑊𝑛
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑊𝑛

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 40

Error back-propagation 4: Accumulate and update

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑋𝑁1

𝐸/ 𝑋𝑁

𝐸/ 𝑋1

𝐸/ 𝑊𝑛

𝐸/ 𝑊𝑁

𝐸/ 𝑊1

O

𝐸
A

c
c
u

m
u

la
te

 a
n

d
 u

p
d

a
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)
𝐸 = 𝐶 (𝑋𝑁 , 𝑂)

…

Gradients with respect to 𝑊𝑛.
For 1 ≤ 𝑛 ≤ 𝑁:

𝜕𝐸

𝜕𝑊𝑛
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹𝑛 𝑊𝑛, 𝑋𝑛−1
𝜕𝑊𝑛

Accumulate gradients and

update parameters.
For 1 ≤ 𝑛 ≤ 𝑁:

𝑊𝑛 = 𝑊𝑛 − 𝜂

𝑖

𝜕𝐸

𝜕𝑊𝑛
𝑊, 𝐼𝑖 , 𝑂𝑖

Usually on batches

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 41

Error back-propagation: simplified notations

𝐹1 (𝑊1 , 𝑋0)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝐹𝑁 (𝑊𝑁 , 𝑋𝑁1)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑛1

𝑊𝑛

𝑋𝑁1

𝑊𝑁

𝐼 = 𝑋0

𝑊1

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑋𝑁1

𝐸/ 𝑋𝑁

𝐸/ 𝑋1

𝐸/ 𝑊𝑛

𝐸/ 𝑊𝑁

𝐸/ 𝑊1

O

𝐸
A

c
c
u

m
u

la
te

 a
n

d
 u

p
d

a
te

Forward pass, for 1 ≤ 𝑛 ≤ 𝑁:

𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1)
𝐸 = 𝐶 (𝑋𝑁 , 𝑂)

We need gradients with

respect to 𝑋𝑛. For 𝑁:

𝜕𝐸

𝜕𝑋𝑁
=
𝜕𝐶

𝜕𝑋𝑁

Then backward recurrence:

𝜕𝐸

𝜕𝑋𝑛−1
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝑋𝑛
𝜕𝑋𝑛−1

Gradients with respect to 𝑊𝑛.
For 1 ≤ 𝑛 ≤ 𝑁:

𝜕𝐸

𝜕𝑊𝑛
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝑋𝑛
𝜕𝑊𝑛

𝑋1

𝑋𝑁

𝑋𝑛

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 42

Layer module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝑊

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝑊

𝑋𝑜𝑢𝑡

𝐹(𝑊,𝑋𝑖𝑛)
𝜕𝐹 𝑊, 𝑋𝑖𝑛
𝜕𝑊

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑋𝑖𝑛

× ×

Notes: 𝑋𝑖𝑛 ≡ 𝑋𝑛−1 , 𝑋𝑜𝑢𝑡 ≡ 𝑋𝑛 , 𝑊 ≡ 𝑊𝑛 and 𝐹 ≡ 𝐹𝑛 for 1 ≤ 𝑛 ≤ 𝑁

Georges Quénot M2-MOSIG-IAR 2020-2021 43

Layer module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝑊

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝑊

𝑋𝑜𝑢𝑡

𝐹(𝑊,𝑋𝑖𝑛)
𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

× ×

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑋𝑖𝑛

≡
𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑊

≡
𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

𝜕𝐸

𝜕𝑊
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

Georges Quénot M2-MOSIG-IAR 2020-2021 44

Layer module (adapted from Yann LeCun)

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑋𝑖𝑛

≡
𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝑋𝑜𝑢𝑡
𝜕𝑋𝑖𝑛

𝜕𝐹 𝑊,𝑋𝑖𝑛
𝜕𝑊

≡
𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

𝜕𝐸

𝜕𝑊
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝑋𝑜𝑢𝑡
𝜕𝑊

Gradient back-propagation rule:

The gradient relative to the input (either 𝑊 or 𝑋𝑖𝑛) is

equal to the gradient relative to the output (𝑋𝑜𝑢𝑡)
times the Jacobian of the transfer function

(respectively
𝜕𝑋𝑜𝑢𝑡

𝜕𝑊
or
𝜕𝑋𝑜𝑢𝑡

𝜕𝑋𝑖𝑛
, left vector multiplication)

Georges Quénot M2-MOSIG-IAR 2020-2021 45

Autograd variable (PyTorch)

data : 𝑋 (may be 𝑋𝑖𝑛, 𝑊 or 𝑋𝑜𝑢𝑡)

grad :
𝜕𝐸

𝜕𝑋
𝐸 : where backward() was called from

grad_fn : 𝐹 | 𝑋 = 𝐹(…) : "None" for 𝑊 or for inputs

Georges Quénot M2-MOSIG-IAR 2020-2021 46

Autograd variable (PyTorch)

𝐹𝑛 (𝑊𝑛 , 𝑋𝑛1)

𝑋𝑛1

𝑊𝑛

𝐸/ 𝑋𝑛1

E/ Xn

𝐸/ 𝑊𝑛

𝑋𝑛

𝑁𝑢𝑙𝑙

𝑊𝑛 𝐸/ 𝑊𝑛

E/ Xn𝑋𝑛

𝐹𝑛

𝑋𝑛1 𝐸/ 𝑋𝑛1

𝐹𝑛1

𝐹𝑛

𝑊𝑛 is an input,
not produced by
any function:
grad_fn = Null

𝑋0 is an input,

not produced by

any function:

grad_fn = Null for 𝑋0

contains both

the data forward function

𝜕𝐸

𝜕𝑋𝑛−1
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹 𝑊,𝑋𝑛−1
𝜕𝑋𝑛−1

𝜕𝐸

𝜕𝑊𝑛
=
𝜕𝐸

𝜕𝑋𝑛

𝜕𝐹 𝑊𝑛, 𝑋𝑛−1
𝜕𝑊𝑛

𝑋𝑛 = 𝐹 𝑊𝑛, 𝑋𝑛1
and the gradient backward

function(s)

Georges Quénot M2-MOSIG-IAR 2020-2021 47

Autograd variable (PyTorch)

𝐶 (𝑋𝑁 , 𝑂)

𝑋𝑁

𝑂

𝐸/ 𝑋𝑁

E/ E

𝐸/ 𝑂

𝐸

𝑁𝑢𝑙𝑙

𝑂 𝐸/ 𝑂

E/ E𝐸

𝐶

𝑋𝑁 𝐸/ 𝑋𝑁

𝐹𝑁

𝐶

𝑂 is an input,
not produced by
any function:
grad_fn = Null

contains both

the data forward function

𝜕𝐸

𝜕𝑋𝑁
=
𝜕𝐸

𝜕𝐸

𝜕𝐶 𝑋𝑁, 𝑂

𝜕𝑋𝑁
𝜕𝐸

𝜕𝑂
=
𝜕𝐸

𝜕𝐸

𝜕𝐶 𝑋𝑁, 𝑂

𝜕𝑂

𝐸 = 𝐶 𝑋𝑁, 𝑂

and the gradient backward

function(s)

Georges Quénot M2-MOSIG-IAR 2020-2021 48

Autograd backward()

Define 𝑋𝑛 = 𝐹𝑛 (𝑊𝑛 , 𝑋𝑛−1) for 1 ≤ 𝑛 ≤ 𝑁 (or arbitrary network)

End with 𝐸 = 𝐶 (𝑋𝑁 , 𝑂)

Execute a forward pass for a training sample (𝐼, 𝑂)

Call E.backward() (backward pass from 𝐸 with 𝐸/𝐸=1)

Get all 𝐸/ 𝑊𝑛 (and E/ Xn) for that training sample

Georges Quénot M2-MOSIG-IAR 2020-2021 49

Autograd Variable and function

Input may be multiple (𝑋𝑖𝑛,𝑊)
Autograd does not care about input types

Georges Quénot M2-MOSIG-IAR 2020-2021 50

Linear module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝑊

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝑊

𝑋𝑜𝑢𝑡

𝑋𝑜𝑢𝑡 = 𝑊𝑋𝑖𝑛
𝜕𝐸

𝜕𝑊
= 𝑋𝑖𝑛

𝜕𝐸

𝜕𝑋𝑜𝑢𝑡

𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡
𝑊

Note: 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡 are regular (column) vectors and 𝑊 is a matrix while E/ Xin

and 𝐸/ 𝑋𝑜𝑢𝑡 are transpose (row) vectors, this is because d𝐸 = (𝐸/ 𝑋).d𝑋 .

𝐸/ 𝑊 is a transposed matrix which is the outer product of the regular and

transpose vectors 𝑋𝑖𝑛 and 𝐸/ 𝑋𝑜𝑢𝑡 .

Forward pass
Data backward pass

Param backward pass

Georges Quénot M2-MOSIG-IAR 2020-2021 51

Pointwise module (adapted from Yann LeCun)

𝑋𝑖𝑛

𝐵

𝐸/ 𝑋𝑖𝑛

𝐸/ 𝑋𝑜𝑢𝑡

𝐸/ 𝐵

𝑋𝑜𝑢𝑡

𝑋𝑜𝑢𝑡 = 𝑓(𝑋𝑖𝑛 + 𝐵)
𝜕𝐸

𝜕𝐵
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡
o 𝑓′(𝑋𝑖𝑛 + 𝐵)

𝑇
𝜕𝐸

𝜕𝑋𝑖𝑛
=
𝜕𝐸

𝜕𝑋𝑜𝑢𝑡
o 𝑓′(𝑋𝑖𝑛 + 𝐵)

𝑇

Notes: 𝐵 is a bias vector on the input. 𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡 and 𝐵 are regular (column) vectors

all of the same size while E/ Xin and 𝐸/ 𝑋𝑜𝑢𝑡 and 𝐸/ 𝐵 are transpose vectors

also of the same size. 𝑓 is a scalar function applied pointwise on 𝑋𝑖𝑛 + 𝐵. 𝑓′ is the

derivative of 𝑓 and is also applied pointwise. The multiplication by 𝑓′(𝑋𝑖𝑛 + 𝐵)
𝑇

is also performed pointwise (Hadamard product denoted “o” here).

Georges Quénot M2-MOSIG-IAR 2020-2021 52

Non-linear functions

• Sigmoid: 𝑧 =
1

1+𝑒𝑦

• Hyperbolic tangent: 𝑧 = tanh𝑦

• Rectified Linear Unit (ReLU): 𝑧 = max(0, 𝑦)

• Programmable ReLU (PReLU) : 𝑧 = max(α𝑦, 𝑦)
with α learned (i.e. α 𝑊)

• …

• Appropriate non-linear functions leads to better

performance and/or faster convergence

• Avoid vanishing / exploding gradients

Georges Quénot M2-MOSIG-IAR 2020-2021 53

Neural Networks in practice

• Good news is that autograd automatically and

transparently takes care of gradients computation and
propagation; you just have to call .backward()

• You only have to define the forward network sequence

• You still have to select various hyper-parameters and to

organize:

– iterations

– batch processing

– learning rate schedule

– possibly data augmentation

Georges Quénot M2-MOSIG-IAR 2020-2021 54

Classical Image classification

Plus: multiple features, early or late fusion, re-scoring …

Engineered
Feature
Extraction

Classical
Machine
Learning

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Support Vector Machines
Multilayer Perceptrons
Random Forests
…

Descriptors

Georges Quénot M2-MOSIG-IAR 2020-2021 55

Classical Image classification

Still classical since 3-layer MLPs are at least 30 years old

Engineered
Feature
Extraction

ScoresImage

Color Histograms
Gabor Transforms
Bags of SIFTs
Fisher Vectors
…

Typically 3 layers
Not really better
than SVMs or
Random Forests

Descriptors

Multilayer
Perceptron

Georges Quénot M2-MOSIG-IAR 2020-2021 56

Deep “end-to-end” Image classification

• Fuzzy boundary between feature extraction and classification even if
there is a transition between convolutional and fully connected layers

• End-to-end learning: features (descriptors) themselves are learned
(by gradient descent) too, not engineered

• Possible only via the use of convolutional layers

ScoresImage

Learned Features Classification

Descriptors of increasing semantic level (𝑋𝑛)

Convolutional
And Pooling

Layers

Fully
Connected

Layers(𝑋0) (𝑋𝑁)

Georges Quénot M2-MOSIG-IAR 2020-2021 57

Convolutional layers (2D grid case)

• Alternative to the “all to all”(vector to vector) connections

• Preserves the 2D image topology via “feature maps”

• 𝑋𝑛 are 3D data (“tensors”) instead of vectors

• 2 of the dimensions are aligned with the image grid

• The third dimension is a set of values associated to a
grid location (gathered in a vector per location but
without associated topology)

• Each component in the third dimension correspond to a
“map” aligned with the image grid

• Each data tensor is a “stack” of features maps

• Translation-invariant (relatively to the grid) processing

Georges Quénot M2-MOSIG-IAR 2020-2021 58

3D tensor data (2D grid case)

Image
height

Image
width

Feature
maps

Set of values
associated to
a single grid
location

Input image data is a special case with 3 feature maps
corresponding to the RGB planes and sometimes 4 or even
more for RGB-D or for hyper-spectral (satellite) image data.

Georges Quénot M2-MOSIG-IAR 2020-2021 59

Convolutional layers (2D grid case)

• Each map point is connected to all maps points of a
fixed size neighborhood in the previous layer

• Weights between maps are shared so that they are
invariant by translation

Georges Quénot M2-MOSIG-IAR 2020-2021 60

Convolutional layers (2D grid case)

• Combination of:

–convolutions within the image plane

– “all to all” within the map dimension

• Separable or non-separable combinations

• Resolution changes across layers: stride and
pooling

• Example: AlexNet

Georges Quénot M2-MOSIG-IAR 2020-2021 61

Classical image convolution (2D to 2D)

• Classical image convolution (2D to 2D):

𝑂 𝑖, 𝑗 = 𝐾 ∗ 𝐼 𝑖, 𝑗 =

𝑚,𝑛

𝐾 𝑚, 𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

• Convolutional layer (3D to 3D):

• m and n : within a window around the current
location, corresponding to the filter size

• 𝐾(𝑚, 𝑛) : convolution kernel

• Example: (circular) Gabor filter:

𝐾 𝑚, 𝑛 =
1

2𝜋𝜎2
. 𝑒
−
𝑚2+𝑛2

2𝜎2 . 𝑒
2𝜋𝑖
𝑚.cos +𝑛.sin

Georges Quénot M2-MOSIG-IAR 2020-2021 62

Classical image convolution (2D to 2D)

3x3 convolution, no stride, half padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

Georges Quénot M2-MOSIG-IAR 2020-2021 63

Classical image convolution (2D to 2D)

3×3 convolution, no stride, no padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

Georges Quénot M2-MOSIG-IAR 2020-2021 64

Classical image convolution (2D to 2D)

3×3 convolution, no stride, full padding

Animation from https://github.com/vdumoulin/conv_arithmetic/

Georges Quénot M2-MOSIG-IAR 2020-2021 65

Set of image convolutions (2D to 3D)

• Set of image convolution (2D to 3D):

𝑂 𝑙, 𝑖, 𝑗 = 𝐾 𝑙 ∗ 𝐼 𝑖, 𝑗 =

𝑚,𝑛

𝐾 𝑙,𝑚, 𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

• 𝑙 : index of the convolution map

• Example: Set of (circular) Gabor filters:

𝐾 𝑙,𝑚, 𝑛 =
1

2𝜋𝜎𝑙
2 . 𝑒
−
𝑚2+𝑛2

2𝜎𝑙
2
. 𝑒
2𝜋𝑖
𝑚.cos 𝑙+𝑛.sin 𝑙

𝑙

𝜎𝑙 , 𝑙 , 𝜃𝑙 1≤𝑙≤𝐿 : set of (circular) Gabor filter parameters

practical filter size: ±4𝜎

Georges Quénot M2-MOSIG-IAR 2020-2021 66

Example Gabor Filter Kernels

Example of (elliptic) filters with 8 orientations and 4 scales

Georges Quénot M2-MOSIG-IAR 2020-2021 67

Convolutional layers

• Set of image convolution (2D to 3D):

𝑂 𝑙, 𝑖, 𝑗 = 𝐾 𝑙 ∗ 𝐼 𝑖, 𝑗 =

𝑚,𝑛

𝐾 𝑙,𝑚, 𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

• Convolutional layer: multiple maps (planes) both in input
and output (3D to 3D, plus bias):

𝑂 𝑙, 𝑖, 𝑗 = 𝐵 𝑙 +

𝑘,𝑚,𝑛

𝐾 𝑘, 𝑙,𝑚, 𝑛 𝐼(𝑘, 𝑖 − 𝑚, 𝑗 − 𝑛)

• k and l: indices of the feature maps in the input and output
layers

• m and n: within a window around the current location,
corresponding to the feature size

Georges Quénot M2-MOSIG-IAR 2020-2021 68

Convolutional layers

• Convolutional layer: multiple maps (planes) both in input
and output (3D to 3D, plus bias):

𝑂 𝑙, 𝑖, 𝑗 = 𝐵 𝑙 +

𝑘,𝑚,𝑛

𝐾 𝑘, 𝑙,𝑚, 𝑛 𝐼(𝑘, 𝑖 − 𝑚, 𝑗 − 𝑛)

• Operation relative to (𝑚, 𝑛) : convolution

• Operation relative to (𝑘, 𝑙) : matrix multiplication plus bias
(equals affine transform)

• Combination of:

– Convolution within the image plane, image topology

– Classical all to all “perpendicularly” to the image plane, no topology

• If image size and filter size = 1: fully connected “all to all”

Georges Quénot M2-MOSIG-IAR 2020-2021 69

Convolutional layers (3D to 3D)

2(input)×3×3×3(output) convolution, no stride, no padding

Illustration from https://arxiv.org/abs/1603.07285

Georges Quénot M2-MOSIG-IAR 2020-2021 70

AlexNet (ImageNet Challenge 2012)

[Krizhevsky et al., 2012]

• 7 hidden layers, 650K units, 60M parameters (W)

• GPU implementation (50× speed-up over CPU)

• Trained on two GTX580-3GB GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012

Georges Quénot M2-MOSIG-IAR 2020-2021 71

Convolutional layers

• The convolution layer kernel is: (𝐷 + 2)-dimensional for 𝐷-
dimensional input data, e.g. 𝐷 = 2 for still images, 𝐷 = 3 for
video segments or scanner images.

• For color images, the RGB (or YUV or HSV …) planes
directly enter the first layer as a 3D volume of size
width × height × 3

• There is one unit (neuron) per “pixel” in the output
𝐷-dimensional topology and per output feature map

• Unit set: set of units associated to a 𝐷-dimensional grid
location, one unit per output feature map, one set per grid
location

• There is a single translation-invariant (𝐷 + 2)-dimensional
kernel per layer for mapping input pixel vectors to output
pixel vectors at all 𝐷-dimensional grid locations

Georges Quénot M2-MOSIG-IAR 2020-2021 72

AlexNet “conv5” example

• Number of units (“neurons”) in a layer (= size of the output tensor):

output image width (13) × output image height (13) × number of

output planes (256) = 43,264

• Number of weights in a layer (= number of weights in a layer):

number of input planes (384) × number of output planes (256) ×

filter width (3) × filter height (3) = 884,736 (884,992 including biases)

• Number of connections: number of grid locations × number of

weights in a unit set (excluding biases) = 149,520,384

Georges Quénot M2-MOSIG-IAR 2020-2021 73

Resolution changes and side effects

• Side (border) effect:

– crop the output “image” relative to the input one and/or

– pad the image if the filter expand outside

• Resolution change (generally reduction):

– Stride: subsample, e.g. compute only one out of N, and/or

– Pool: compute all and apply an associative operator to
compute a single value for the low resolution location from the
high resolution ones

• Common pooling operators: maximum or average

• Pooling correspond to a separate back-propagation
module (as the linear and non-linear parts of a layer)

Georges Quénot M2-MOSIG-IAR 2020-2021 74

Pytorch tutorial network (LeNet)

(Grayscale image)

Georges Quénot M2-MOSIG-IAR 2020-2021 75

Pytorch tutorial network

Georges Quénot M2-MOSIG-IAR 2020-2021 76

Pytorch tutorial network (color image)

Georges Quénot M2-MOSIG-IAR 2020-2021 77

Dropout

• Regularization technique

• During training, at each epoch, neutralize a given
(typically 0.2 to 0.5) proportion of randomly selected
connections

• During prediction, keep all of them with a multiplicative
compensating factor

• Avoid concentration of the activation on particular
connections

• Much more robust operation

• Faster training, better performance

Georges Quénot M2-MOSIG-IAR 2020-2021 78

Softmax

• Normalization of output as probabilities
(positive values summing to 1) for the multi-
class problem (i.e. target categories are
mutually exclusive)

• 𝑧𝑖 =
𝑒𝑦𝑖

 𝑗 𝑒
𝑦𝑗

• Not suited for the multi-label case (i.e. target
categories are not mutually exclusive)

• Associated loss function is cross-entropy

Georges Quénot M2-MOSIG-IAR 2020-2021 79

Cross-entropy loss (multi-class)

• 𝑝𝑖 : probability vector for class 𝑖

• 𝑙𝑖 : truth value for class 𝑖 (“one hot encoding”)

• 𝐿 = 𝑖− 𝑙𝑖 log 𝑝𝑖

• For exclusive classes, 𝑙𝑖 is equal to 1 only for the right
class 𝑖0 and to 0 otherwise:

• 𝐿 = − log 𝑝𝑖0 (log 1 = 0 and log 0 = −)

• Forces 𝑝𝑖0 to be close to 1, very high loss value if 𝑝𝑖0 is

close to 0 faster convergence

• Other 𝑝𝑖 indirectly forced to be close to 0 because the
𝑝𝑖s sums to 1

• With softmax: forces 𝑦𝑖0 to be greater than the other 𝑦𝑖s

Georges Quénot M2-MOSIG-IAR 2020-2021 80

Cross-entropy loss (multi-label)

• Non-exclusive categories are called labels and are
seen as independent, each with two-classes

• 𝑝𝑖 : probability vector for label 𝑖

• 𝑙𝑖 : truth value for label 𝑖 (either 0 or 1)

• Sigmoid “normalization”: 𝑝𝑖 =
1

1+𝑒−𝑦𝑖
and 1 − 𝑝𝑖 =

1

1+𝑒𝑦𝑖

• 𝐿 = 𝑖− 𝑙𝑖 log 𝑝𝑖 + (1 − 𝑙𝑖)log(1 − 𝑝𝑖)

• Same formula as for multi-class with a two-class
problem for each label

• Sum of CE Losses per label

• Note: works also if 𝑙𝑖 has non-binary values
(probabilities of the true distribution)

Georges Quénot M2-MOSIG-IAR 2020-2021 81

Yann LeCun recommendations

• Use ReLU non-linearities (tanh and logistic are falling out of favor)

• Use cross-entropy loss for classification

• Use Stochastic Gradient Descent on minibatches

• Shuffle the training samples

• Normalize the input variables (zero mean, unit variance)

• Schedule to decrease the learning rate

• Use a bit of L1 or L2 regularization on the weights (or a combination)

– But it's best to turn it on after a couple of epochs

• Use “dropout” for regularization

– Hinton et al 2012 http://arxiv.org/abs/1207.0580

• Lots more in [LeCun et al. “Efficient Backprop” 1998]

• Lots, lots more in “Neural Networks, Tricks of the Trade” (2012
edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

http://arxiv.org/abs/1207.0580

Georges Quénot M2-MOSIG-IAR 2020-2021 82

Recent trends

• VGG and GoogLeNet (16-19 and 22 layers)

• Residual networks (152 layers with “shortcuts”)

• Stochastic depth networks (up to 1202 layers)

• Dense Networks

• Weakly supervised / unsupervised learning

• Generative adversarial networks

• Segmentation networks

• Multimodal embeddings

Georges Quénot M2-MOSIG-IAR 2020-2021 83

GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

9 “inception” modules

Georges Quénot M2-MOSIG-IAR 2020-2021 84

GoogLeNet (very deep)

Christian Szegedy et al.: Going Deeper with Convolutions, CVPR 2014.

Reminder: 1x1 convolutions actually implements an all-to-all between
the input and output maps (pixel-wise all-to-all)

Georges Quénot M2-MOSIG-IAR 2020-2021 85

VGG Network (very deep)

Simonyan and Zisserman, Andrew: Very Deep Convolutional Networks
for Large-Scale Image Recognition, CVPR 2014.

All 3x3 convolutions

Georges Quénot M2-MOSIG-IAR 2020-2021 86

Residual networks (ultra deep)

He, Zhang, Ren and Sun: Deep Residual Learning for Image
Recognition, CVPR 2015

Ultra deep network with “shortcuts”

Georges Quénot M2-MOSIG-IAR 2020-2021 87

Stochastic depth networks (extremely deep)

Huang et al.: Deep Networks with Stochastic Depth, CVPR 2016

ResNet with stochastic depth
“Dropout at the layer level”

Georges Quénot M2-MOSIG-IAR 2020-2021 88

Dense networks

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

All layers connected to all layers
(in the forward direction only and
without resolution change

Georges Quénot M2-MOSIG-IAR 2020-2021 89

Dense networks

Huang et al.: Densely Connected Convolutional Networks, CVPR 2016

A deep DenseNet with three dense blocks
The layers between blocks are transition layers that change the
resolution via convolution and pooling

Georges Quénot M2-MOSIG-IAR 2020-2021 90

Weakly / unsupervised learning

• Gather millions (from 1 to 100) of images from the web

• Two main strategies:

– Query an image search engine (e.g. Google) with either target

tags or descriptions → we can choose the categories

– Download images with associated descriptions from a social

network (e.g. Flickr) and extract/select tags from the description

→ we have to do with the available categories

• Filter the results (may use cross-validation predictions)

• Train from noisy data and compensate the loss due to

noise with a gain from quantity

• Work on the quality of the category-image association

• Use classifiers or features for transfer learning

Georges Quénot M2-MOSIG-IAR 2020-2021 91

Weakly / unsupervised learning

• Webly Supervised Learning of Convolutional Networks

Xinlei Chen and Abhinav Gupta

arXiv:1505.01554, May 2015

• Effective training of convolutional networks using noisy Web images

Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu

CBMI, June 2015

• Learning from Massive Noisy Labeled Data for Image Classification

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang

CVPR, June 2015

• Harnessing Noisy Web Images for Deep Representation

Phong D. Vo, Alexandru Ginsca, Hervé Le Borgne, Adrian Popescu

arXiv:1512.04785, July 2016

• Learning Visual Features from Large Weakly Supervised Data

Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache

ECCV, Sep. 2016

Georges Quénot M2-MOSIG-IAR 2020-2021 92

Engineered versus learned descriptors

• Classical “classification pipeline”

– Extraction(s) – [aggregation] – optimization(s) –
classifier(s) – one or more levels of fusion – re-scoring
(non exhaustive example)

– Most of the stages are explicitly engineered: the form
of descriptors or processing steps has been thought
and designed by a skilled engineer or researcher

– Lots of experience and acquired expertise by
thousands of smart people over tens of years

– Learning concerns only the classifier(s) stages and a
few hyper-parameters controlling the other ones

– Almost everything has been tried

– The more you incorporate, the more you get (at a cost)

Georges Quénot M2-MOSIG-IAR 2020-2021 93

Engineered versus learned descriptors

• Deep learning pipeline: MLP with about 8 layers
– Advances in computing power (Tflops): large networks possible

– Algorithmic advance: combination of convolutional layers for the
lower stages with all-to-all layers; the topology of the image is
preserved in the lower layers with weights shared between the
units within a layer

– Algorithmic advances: NN researchers finally find out how to have
back-propagation working for MLP with more than three layers

– Image pixels are entered directly into the first layer

– The first (resp. intermediate, last) layers practically compute low-
level (resp. intermediate level, semantic) descriptors

– Everything is made using a unique and homogeneous architecture

– A single network can be used for detecting many target concepts

– All the level are jointly optimized at once

– Requires huge amounts of training data

Georges Quénot M2-MOSIG-IAR 2020-2021 94

Transfer Learning

• Train a multi-class classifier on large annotated
data collection, e.g. ImageNet

• Extract hidden layers (or final) layers, typically
close to the end as they contain very general and
highly semantic information, e.g. FC6 (4096), FC7
(4096) and/or FC8 (1000) in an AlexNet

• Use them as descriptors for completely different
tasks, either in classification or in retrieval

• PCA-based dimensionality reduction works very
well, producing both very compact (few hundreds
components “only”) and very effective descriptors

Georges Quénot M2-MOSIG-IAR 2020-2021 95

Deep Learning and IAR

• Indexing for key-word-based search

– Get an estimate of presence probability for an as large as
possible set of concepts / categories

– Map any query to a subset of them

– Score the multimedia samples according to the presence
probabilities of the selected ones

• Query by example or instance search

– Use last layers values (output or last but one or last but two)
as semantic feature vectors (descriptors) for the query and
the candidate

– Classical QBE with Euclidean distance or scalar product

– Possibility to do even better by “metric learning”

Georges Quénot M2-MOSIG-IAR 2020-2021 96

Metric learning with Siamese Networks

• Two-branch Siamese network: find representations that
produces small distances between “similar” element
and large distances between “dissimilar” elements:
enter matching or non-matching pairs

• Three-branch Siamese network: find representations
that produces smaller distances between “similar”
element than between “dissimilar” elements: enter
(query, positive, negative) triplets

• Triplet loss (Gordo et al. 2016):

𝐿 𝐼𝑞 , 𝐼
+, 𝐼− =

1

2
max 0,𝑚 + 𝑞 − 𝑑+ 2 − 𝑞 − 𝑑− 2

• The choice of the 𝐼𝑞, 𝐼
+ and 𝐼− samples is important:

use neither too easy nor too difficult ones

Georges Quénot M2-MOSIG-IAR 2020-2021 97

Metric learning with Siamese Networks

• Shared weights between branches learned or fine-tuned
using triplets

• A single branch (without loss) extracts representations

• Region of interest (ROI) pooling is also used (implicit
learning of where the targets of interest might be)

Georges Quénot M2-MOSIG-IAR 2020-2021 98

Feed-forward network on a sequence

ℎ𝑡 = 𝜎 𝑊ℎ𝑥𝑡 + 𝑏ℎ
𝑦𝑡 = 𝜎 𝑊𝑦ℎ𝑡 + 𝑏𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

𝑊ℎ 𝑊ℎ 𝑊ℎ

𝑊𝑦 𝑊𝑦 𝑊𝑦

Independent predictions: no history

Training on samples

Only two linear layers here: not deep (usually more)

Georges Quénot M2-MOSIG-IAR 2020-2021 99

Simple recurrent network (Elman)

ℎ𝑡 = 𝜎 𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ
𝑦𝑡 = 𝜎 𝑊𝑦ℎ𝑡 + 𝑏𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

h0

𝑊ℎ 𝑊ℎ 𝑊ℎ

𝑊𝑦 𝑊𝑦 𝑊𝑦

𝑈ℎ 𝑈ℎ 𝑈ℎ

Sequence (past) history is represented in the hidden states

Training on sequences (unfolded loop)

Back-propagation through many hidden states: deep

Georges Quénot M2-MOSIG-IAR 2020-2021 100

Simple recurrent network (Jordan)

ℎ𝑡 = 𝜎 𝑊ℎ𝑥𝑡 + 𝑈ℎ𝑦𝑡−1 + 𝑏ℎ
𝑦𝑡 = 𝜎 𝑊𝑦ℎ𝑡 + 𝑏𝑦

x1 x2 x3

h1 h2 h3

y1 y2 y3

…

…

…

𝑊ℎ 𝑊ℎ 𝑊ℎ

𝑊𝑦 𝑊𝑦 𝑊𝑦

𝑈ℎ 𝑈ℎ 𝑈ℎ

Sequence (past) history is represented in the hidden states

Training on sequences (unfolded loop)

Back-propagation through many hidden states: deep

y0

Georges Quénot M2-MOSIG-IAR 2020-2021 101

Folded (usual) representations

xt

ht

yt

𝑊ℎ

𝑊𝑦

𝑈ℎ

Elman Jordan

xt

ht

yt

𝑊ℎ

𝑊𝑦 𝑈ℎ

Georges Quénot M2-MOSIG-IAR 2020-2021 102

Recurrent neural networks

• Perform sequence-to-sequence transformations

• Learns patterns in sequences

• Used in speech and in natural language processing

• Used in video processing (action recognition)

• Simple RNNs have limitations (unstable gradients)

• Variants with “memory cells”:

– Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)

– Gated Recurrent Units (Cho et al., 2014) (simplified LSTM)

– Avoid exploding or vanishing gradients on long sequences

– Can “count”

Georges Quénot M2-MOSIG-IAR 2020-2021 103

Word embeddings

• Map words in a D-dimensional space with semantic
distances and relations roughly preserved

From

Mikolov, 2013

(Word2Vec)

Georges Quénot M2-MOSIG-IAR 2020-2021 104

Word2Vec (Mikolov et al., 2013)

• Words are represented by “1-hot encoding”

• Encoder-decoder architectures

– Encoder: V dims to D dims linear map(s)

– Decoder: D dims to V dims linear map(s)

– V: vocabulary size, D: embedding size

• Two variants:

– CBOW: predict single words from their neighbors

– Skip-gram: predict neighbors from single words (better)

• The intermediate representation is the embedding

• Unsupervised learning: from huge amounts of raw data

• Learning by gradient descent

Georges Quénot M2-MOSIG-IAR 2020-2021 105

Word2Vec skip grams

1 encoding matrix

4 decoding matrices

All source and

target vectors are

1-hot encoded

