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Learning

• Machine learning: learning from data.

• Unsupervised learning:

– Without human intervention,

– Simple data,

– Automatic class extraction (clustering).

• Supervised learning:

– With human intervention (annotation),

– Labeled (or annotated) data

– Classification (predefined classes),

– Regression (continuous values).
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Supervised learning

• A machine learning technique for creating a function from training 
data.

• The training data consist of pairs of input objects (typically vectors) 
and desired outputs.

• The output of the function can be a continuous value (regression) 
or a class label (classification) of the input object.

• The task of the supervised learner is to predict the value of the 
function for any valid input object after having seen a number of 
training examples (i.e. pairs of input and target output).

• To achieve this, the learner has to generalize from the presented 
data to unseen situations in a “reasonable” way.

• The parallel task in human and animal psychology is often referred 
to as concept learning (in the case of classification).

• Most commonly, supervised learning generates a global model
that helps mapping input objects to desired outputs.

(http://en.wikipedia.org/wiki/Supervised_learning)
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• Target function:  f : X  Y
x  y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible image tags:

Learning a target function

𝑓 = “cat” 

𝑓 = “dog” 

𝑓 = “car” 

𝑋 =  

(𝑤,ℎ)∈ℕ∗2

[0,1]𝑤×ℎ×3

𝑌 = “cat”, “dog” …
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• Target function:  f : X  Y
x  y = f(x)

– x : input object, e.g., color image
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible color images:

Set of possible tag scores:

Learning a target function

𝑓 =
𝑋 =  

(𝑤,ℎ)∈ℕ∗2

[0,1]𝑤×ℎ×3

𝑌 = ℝ “cat”,“dog”… = ℝ𝑐

0.90
0.04
0.01
…

𝑓 =

𝑓 =

0.07
0.88
0.02
…

0.02
0.03
0.86
…

 “cat”
 “dog”
 “car”
 …
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• Target function:  f : X  Y
x  y = f(x)

– x : input object, e.g., image descriptor
– y : desired output, e.g., class label or image tag
– X : set of valid input objects
– Y : set of possible output values

Set of possible image descriptors:

(or subset of it)

Set of possible tag scores:

𝐷 is a predefined and fixed function

from                                    to ℝ𝑑

Learning a target function

𝑓 𝐷 = 𝑋 = ℝ𝑑

𝑌 = ℝ𝑐

0.90
0.04
0.01
…

0.07
0.88
0.02
…

0.02
0.03
0.86
…

𝑓 𝐷 =

𝑓 𝐷 =
 

(𝑤,ℎ)∈ℕ∗2

[0,1]𝑤×ℎ×3
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Learning from training data

• Training data:  S = (xi, yi)(1  i  I)

– I : number of training samples

• Learning algorithm:  L : (X×Y)*  YX

S          f = L(S)

( (X×Y)* = nN (X×Y)n )

YX : set of all applications from X to Y

• Regression or classification system:  

y = f(x) = [L(S)](x) = g(S, x)
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Supervised learning
• Target function:  f : X  Y

x  y = f(x)

– x : input object (typically vector)

– y : desired output (continuous value or class label)

– X : set of valid input objects

– Y : set of possible output values

• Training data:  S = (xi,yi)(1  i  I)

– I : number of training samples

• Learning algorithm:  L : (X×Y)*  YX

S          f = L(S)

• Regression or classification system:  

y = f(x) = [L(S)](x) = g(S, x)
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Two types of functions

• Target function:  f : X  Y
x  y = f(x)

– maps input objects to desired outputs

– often determined by a set of parameters

– the function or its parameter are learnt from a training set

• Learning algorithm:  L : (X×Y)*  YX

S        f = L(S)

– maps training sets to target functions

– often controlled by a set of hyper-parameters

– hyper-parameters may be tuned on a validation set



Georges Quénot                     M2-MOSIG-IAR                        2020-2021 10

Model based supervised learning

• Two functions, “train” and “predict”, cooperating 
via a Model

• General regression or classification system: 

y = [L(S)](x) = g(S,x)

• Building of a model (train):

M = T(S)

• Prediction using a model (predict):

y = [L(S)](x) = g(S,x) = P(M,x) = P(T(S),x)
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Supervised learning
Classification problem

Train

Model

Predict

Training samples

Testing samples Predicted classes

S = (xi,yi)(1  i  I)

M = T(S) = T((xi,yi)(1  i  I))

x y = P(M,x) = P(T(S),x)
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Classification methods

• Gaussian Mixture Models

• Hidden Markov Models

• Decision trees

• Genetic algorithms

• Artificial neural networks

• K-nearest neighbor

• Linear discriminant analysis

• Support vector machines

• Minimum message length

• And many more.
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k nearest neighbors (k-NN)

• No training : M = T(S) = S     (T = identity)

• Compute the distances from the unknown 
sample x to all the training samples xi,

• Select the 𝑘 closest xi,

• Compute the class of x from the classes of the 
closest xi’s:

– k = 1 : the class of x is the class of the closest xi,

– k is odd and there are only two classes : majority 
vote.

• k-NN is a non linear classifier and can easily 
model classes with very irregular shapes,
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k nearest neighbors (k-NN)

• 1-NN is a simple and quite often excellent 
classifier, it is often chosen as a baseline for 
comparison between systems,

• 3-NN is more robust against isolated outliers,

• Improvement: weight class values according to the 
(inverse) distance to the query point

• May be slow for classification because of the need 
to compute the distances with all the training 
samples

• However a single NN search may be performed for 
many classifications at once (multi-label problem)

• May be used for indexing (off-line) or for search 
(on-line, “similarity search”)
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Computation of distance for k-NN

• Euclidian distance, angle between vectors,

• Comparison between a query vector to all the vectors 
in the database (no pre-selection),

• “Small” number of dimensions ( < 10) : clustering 
techniques, hierarchical search,

• “Medium” number of dimensions ( ~ 10+) : methods 
based on space partitioning,

• “Large” number of dimensions( >> 10 ) : no known 
method faster that a full linear scan,

• Reduction of the number of dimensions by Principal 
Component Analysis.

• Approximate Nearest Neighbors: LSH
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Locality Sensitive Hashing (LSH)

• Hashing: store many data samples into a table of 

fixed length; data placed into “buckets”

• “Regular” Hashing: avoid collision for faster 

access, polynomial and multiples XOR functions; 

any type of data

• Locality preserving hashing: favor collisions of 

“close” samples into the same buckets; data from 

highly dimensional Euclidean space, multiple 

projection functions



Georges Quénot                     M2-MOSIG-IAR                        2020-2021 17

LSH: Multiple projection functions

• Set of random directions

• Projection on the axes  one component per 

direction

• Split values on axes according to a data 

distribution (two, four, eight … intervals)

• One or more bits per direction (generally one)

• Concatenation for producing the bucket index

• Multiple projections: matrix vector multiplication
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LSH: Use of multiple tables

• Build many LSH tables

• For each table, select all the test samples that fall in the 

same bucket than the query sample

• Compute the Euclidean distance only for those samples

• Sort the test samples according to the Euclidean distances

• Euclidean distances are not approximate but some 

samples close to the query may not fall in the selected 

buckets

• The size and number of tables must be chosen so that 

enough and not too many samples are found for a query
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LSH: Use of hamming distance

• Build binary codes (bucket index) as for one LSH table

• Hamming distance: number of bit locations in which the 

binary values differ: bitwise XOR followed by a count on 1 

bits; modern processors have this as a single instruction

• Compute the Hamming distance between the query and 

all test samples: much faster than Euclidean distance

• Select samples with closest Hamming distance

• Compute the Euclidean distance only for those samples

• Similar to multiple tables from there



Georges Quénot                     M2-MOSIG-IAR                        2020-2021 20

Support Vector Machines (SVM)

• Empirical risk minimization

• Linear classifier with maximum margin

• The “kernel trick” permits non linear classification also 
with maximum margin and minimum empirical risk
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SVM linear classification

• Maximum-margin 
hyperplanes for a SVM 
trained with samples 
from two classes.

• Samples along the 
hyperplanes are called 
the support vectors.

• The separated 
hyperplane is defined 
by:

wT.x  b = 0

• The margin is 2/|w|
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SVM linear classification
• If the data is linearly separable:

if yi = 1 : wT.xi  b ≤ 1       if yi = +1 : wT.xi  b ≥ 1

• This can be rewritten as:

yi.(w
T.xi  b) ≥ 1

• SVM problem primal form:

Minimize:               subject to:                         ,   1 ≤ i ≤ n.

• SVM problem dual form:

maximize:                                           subject to    i ≥ 0

i ’s are non zero only for the support vectors.
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SVM linear classification

• Soft margin, primal form:





• Dual form:

i ≥ 0  0  ≤  i ≤ C

• Allows for “misclassified” samples.
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SVM non-linear classification

• Kernel trick: projection on a cone (2D  3D): 

(𝑥, 𝑦)  𝑥, 𝑦 = 𝑥, 𝑦, 𝑥2 + 𝑦2

+
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SVM non-linear classification

• Decision function:

• Quadratic form maximization:

• Kernel trick:                 

•  : possibly non-linear function, does not need to be 
computed, implicitly defined via the kernel (K) definition, 
linear separation in the im() space, may be non linear 
in the original space.
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SVM non-linear classification

• Mercer condition : K(xi,xj) must be definite positive.

• Common kernels:

– Polynomial (homogeneous): 

– Polynomial (inhomogeneous): 

– Radial Basis Function:

– Sigmoid:                                        , for some (not every) κ > 0 and c < 0
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SVM summary

• Maximization of the margin for linearly separable data

• Use of a dual form for finding support vectors and 
coefficients (convex optimization)

• Use of soft margin for “almost” linearly separable data

• Use of the “kernel trick” for non-linearly separable data

• Most commonly used kernel: 𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦
2



𝑓 𝑥 =  𝑖=1
𝑖=𝐼 ∝𝑖 𝑦𝑖𝑒

−𝛾 𝑥−𝑥𝑖
2
+ 𝑏 : weighted sum of 

Gaussians centered on the support samples (vectors)
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Hyper-parameter tuning

• Parameters:

– Parameters of the model learnt from training data

– e.g. values of the support vectors (xi) and Lagrange coefficients 
(αi) in SVMs

• “Hyper”-parameters:

– Parameters that controls how the model (and “standard” 
parameters) are learnt

– e.g. soft margin coefficient (C) in SVMs and the scale 
parameter in the RBF version (γ)

– Possibly also class weights

– Controls “how well” the classification algorithm generalizes 
from training data, especially the under fit versus over fit 
compromise
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Hyper-parameter tuning, validation set

• A dataset used for training cannot be used for 
evaluation (over-fitting)

• Standard method: use different datasets for training 
and performance evaluation, each with annotated 
samples.

• Tuning of hyper-parameters on the test set is bad 
(over-fitting again)

• Good solution: use three datasets: train, val and test, all 
with annotated samples

• Train and evaluate several hyper-parameter values 
between train and val and then apply to test.
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Hyper-parameter tuning, validation set

• Parameter tuning: selection of the optimal hyper-
parameter combination by training on train and 
evaluating on val.

• Actual evaluation: keep the optimal hyper-parameter 
values, train on train+val and evaluate on test.

Train Val Test

Train Val Test
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No validation set: split the training set

• Split into two equal parts, use first part as train and 
second part for validation (“one-fold” cross-validation)

• Two-fold cross-validation

Dev Test

Train Val Test

Train Val Test

TrainVal Test
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Two-fold cross-validation

• Use two parts alternatively for training and validation

• The whole development set is used both for training and 
for evaluation during hyper-parameter tuning

• Tuning is done on MAP (hyper-parameters)
– Either average the MAP on the two validations

– Or compute a global MAP on the concatenated scores

• Training is done on half of the development set each time

Train Val Test

TrainVal Test
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N-fold cross-validation

• Use N parts of 1/N od the development set alternatively 
for validation and the complement ((N-1)/N) for training

• The whole development set is used both for training 
and for evaluation during hyper-parameter tuning

• Training is done on (N-1)/N of the development set 
each time, the greater N, the better.

Val Test

Train TestTrain

Train Test

Train

Val

Val
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Probabilized output

• SVM scores possibly ranges from ∞ to +∞

• Probabilities are expected to range from 0 to 1

• Sigmoid transform: p(score) = 1/(1+e(A*score+B))

• Additional hint: among the samples within a small interval 
around p, a fraction of about p would have positive labels

• Platt’s (1999) method: learn A and B by cross-validation 
to optimally satisfy the above hint

• Probability normalized outputs better for late fusion

• Linear SVM + sigmoid normalization  logistic regression


