Word Sense Disambiguation

Didier SCHWAB Didier.Schwab@imag.fr

• Natural languages are ambiguous:

The mouse ate some cheese

• Natural languages are ambiguous:

The mouse ate some cheese

• Natural languages are ambiguous:

The mouse ate some cheese

• Natural languages are ambiguous:

• Natural languages are ambiguous:

- Most words have several possible meanings
- => Very few have a single meaning
- Monosemic : 'neuroleptic', 'daucus carota',
- Polysemic : 'mouse', 'rabbit', 'carot'
- In English : the 121 most frequent nouns
 - On average 1 word out of five in actual texts
 - ~7.8 meanings per word (in Princetown WordNet)
- What is (often) really easy task for a human is difficult for a computer
- Finding a better sense for a word in a text is called Word Sense Disambiguation

- Aim of WSD: selecting a sense for each word in a text from an inventory (set) of predefined possibilities
- A word sense is the meaning of a word in a given context
- Inventories are produced from dictionnaries, raw texts, ...
- How to represent word senses ?
- How to fetch the meanings of a word ?

Sets of Word Senses

- How to fetch the meanings of a word ?
 - With respect to a dictionary, a lexical base...
 - **mouse#1** : any of numerous small rodents...
 - mouse#2 : a hand-operated electronic device...
 - With respect to the translation in a second language
 - mouse#1 : tikus
 - mouse#2 : tetikus

Sets of Word Senses

- How to fetch the meanings of a word ?
 - With respect to the context where it occurs...
 - mouse#1 : ,,The cat hurt the mouse" ; "The mouse is eating the cheese" ; ...
 - **mouse#2** : "The mouse is linked to the computer." ; "My mouse is broken." ; …
 - With respect to relations it shares in a semantic network
 - **mouse#1 :** hypernyms (kind-of) : 'rodent', 'mammal',... ; related-to : 'mousy', 'mousey'
 - mouse#2 : hypernyms : 'electronic device' ; related-to : 'to mouse'
 - Others
 - Combinations

- Given a pre-defined inventory of word senses
- Given a text
- Tag each ambiguous word occurrence with the most likely word sense
- Example :
- 'The cat is eating the mouse'

'The cat is eating the mouse'

'The cat is eating the mouse'

Word Sense Disambiguator

Sense Tagging 'The cat 'The **cat#1** Word Sense is eating is eating Disambiguator the mouse#1' the mouse input output

Practical Applications

WSD for machine translation

• Which translation of "mouse" ?

tikus

- Which translation of "bank" in French?
 - $Bank \rightarrow Berge$

 $Bank \rightarrow Banque$

WSD for machine translation

Query :

house ?

Query :

mouse?

Query :

mouse rodent ?

- Systems that automatically answer questions posed by humans in a natural language
- Examples :
 - Where is the Eiffel Tower?
 - What time is it ?
 - When did George Bush enter in White House ?

When did George Bush enter in White House ?

When did George Bush enter in office? Which George Bush ?

Knowledge Acquisition

The liberation of Paris was in 1944

Kentucky, USA

France

Knowledge Acquisition

Mozart est mort à Vienne

France

Austria

WSD for speech synthesis

- Artificial production of human speech from written text
- Integrated in some operating systems
- Useful for:
 - Blind people
 - Mutes
 - System interaction through phones
WSD for speech synthesis

French : fils (yarn)

[fis]

[fil]

Speech recognition (~WSD)

- Artificial production of text from human speech
- Homophones: Two words that sound the same but have different meanings

night

knight

Speech recognition (~WSD)

ancre

[ancre]

encre

Evaluating Word Sense Disambiguation Performance

Evaluation of WSD Systems

- In vivo evaluation
 - WSD systems evaluated through their contributions to the overall performance of a particular NLP application
 - The most natural way to evaluate
 - But the harder to set up
- In vitro evaluation
 - WSD task defined independently of any particular application
 - Systems evaluated using specially constructed benchmarks

- A benchmark : a sense-annotated corpus
- The same corpus without annotations

Evaluation of WSD Systems

- *In vivo* evaluation (extrinsic)
 - WSD systems evaluated through their contributions to the overall performance of a particular NLP application
 - The most natural way to evaluate
 - But the most difficult to set up
- *In vitro* evaluation (intrinsic)
 - WSD task defined independently from any particular application
 - Systems evaluated using specifically constructed benchmarks

- A benchmark (gold-standard):reference sense-annotated corpus
- The same corpus without annotations

d001 d001.s001.t001 editorial%1:10:00:: !! lemma=editorial#n d001 d001.s001.t002 ill%3:00:01:: !! lemma=Ill#a d001 d001.s001.t003 homeless%1:14:00:: !! lemma=Homeless#n d001 d001.s001.t004 refer%2:42:00:: !! lemma=refer#v d001 d001.s001.t005 research%1:09:00:: !! lemma=research#n d001 d001.s001.t006 six%5:00:00:cardinal:00 !! lemma=six#a d001 d001.s001.t007 colleague%1:18:01:: !! lemma=colleague#n d001 d001.s001.t008 report%2:32:13:: !! lemma=report#v

- A benchmark (gold-standard):reference sense-annotated corpus
- The same corpus without annotations

d001 d001.s001.t001 editorial%1:10:00:: !! lemma=editorial#n d001 d001.s001.t002 ill%3:00:01:: !! lemma=Ill#a d001 d001.s001.t003 homeless%1:14:00:: !! lemma=Homeless#n d001 d001.s001.t004 refer%2:42:00:: !! lemma=refer#v d001 d001.s001.t005 research%1:09:00:: !! lemma=research#n d001 d001.s001.t006 six%5:00:00:cardinal:00 !! lemma=six#a d001 d001.s001.t007 colleague%1:18:01:: !! lemma=colleague#n d001 d001.s001.t008 report%2:32:13:: !! lemma=report#v

- A benchmark : a sense-annotated corpus
- The same without annotations

First document

d001 d001.s001.t001 editorial%1:10:00:: !! lemma=editorial#n d001 d001.s001.t002 ill%3:00:01:: !! lemma=Ill#a d001 a001.s001.t003 homeless%1:14:00:: !! lemma=Homeless#n d001 d001.s001.t004 refer%2:42:00:: !! lemma=refer#v d001 d001.s001.t005 research%1:09:00:: !! lemma=research#n d001 d001.s001.t006 six%5:00:00:cardinal:00 !! lemma=six#a d001 d001.s001.t007 colleague%1:18:01:: !! lemma=colleague#n d001 d001.s001.t008 report%2:32:13:: !! lemma=report#v

First document

- A benchmark : a sense-annotated corpus
- The same without annotations

d001 d001.s001.t001 editorial%1:10:00:: !! lemma=editorial#n d001 d001.s001.t002 ill%3:00:01:: !! lemma=Ill#a d001 d001.s001.t003 homeless%1:14:00:: !! lemma=Homeless#n d001 d001.s001.t004 refer%2:42:00:: !! lemma=refer#v d001 d001.s001.t005 research%1:09:00:: !! lemma=research#n d001 d001.s001.t000 six%5:00:00:cardinal:00 !! lemma=six#a d001 d001.s001.t007 comeague% ma=colleague#n d001 d001.s001.t008 refer%2:42:00 for ma=colleague#n

of the first sentence of the first document

- A benchmark : a sense-annotated corpus
- The same without annotation Solution First document (best sense)

d001 d001.s001.t001 editorial%1:10:00:: " lemma=editorial#n d001 d001.s001.t002 ill%3:00:01:: !! lemma=Ill#a d001 d001.s001.t003 homeless%1:14:00:: !! lemma=Homeless#n d001 d001.s001.t004 refer%2:42:00:: !! lemma=refer#v d001 d001.s001.t005 research%1:09:00:: !! lemma=research#n d001 d001.s001.t000 six%5:00:00:cardinal:00 !! lemma=ix#a d001 d001.s001.t007 comeague% ma=collea_e#n oort#v

of the first sentence of the first document

lemma

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

Raw Texts

Your Oct. 6 editorial "The Ill Homeless" referred to research by us and six of our colleagues that was reported in the Sept. 8 issue of the Journal of the American Medical Association .

```
    Texts
```

```
<text id="d001">
```

```
<sentence id="d001.s001">
```

```
Your Oct. 6
```

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a reference sense-annotated corpus
- The same corpus without annotations

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

Raw Texts

Your Oct. 6 editorial "The Ill Homeless" referred to research by us and six of our colleagues that was reported in the Sept. 8 issue of the Journal of the American Medical Association .

Texts

<text id="d001">

```
<sentence id="d001.s001">
Your Oct. 6
<instance id="d001.s001.t001" lemma="editorial" pos="n">editorial</instance>
``The
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark
- The same c

annotations

Raw Texts

Your Oct. 6 editorial e Ill Homeless" referred to research by us and six of our colleagues that was reported in the Sept. 8 issue of the Journal of the American Medical Association .

First text

• Texts

<text id="d001">

```
<sentence id="d001.s001">
Your Oct. 6
<instance id="d001.s001.t001" lemma="editorial" pos="n">editorial</instance>
``The
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
```

pos="n">Homeless</instance>

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

Raw Texts

Your Oct. 6 editorial "The Ill Homeless" referred to research by us and six of our colleagues that was reported in the Sept. 8 issue of the Journal of the American Medical Association .

```
    Texts
```

<text id="d001">

<sentence id="d001.s001">

Your Oct. 6

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a sense-annotated corpus
- The same

First sentence of the first text

nnotations

Raw Texts

Your Oct. 6 editorial "The Ill Homeless" referred to research by us and six of our colleagues that was repeated in the Sept. 8 issue of the Journal of the American Medical Association .

• Texts

```
<text id="d001">>
```

```
<sentence id="d001.s001">
```

Your Oct. 6

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

Raw Texts

Your Oct. 6 editorial "The Ill Homeless" referred to research by us and six of our colleagues that was reported in the Sept. 8 issue of the Journal of the American Medical Association .

```
    Texts
```

<text id="d001">

<sentence id="d001.s001">

Your Oct. 6

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a sense-annotated corpus
- The same

onse-annotations

Raw Texts
 Unevaluated parts

Your Oct. 6 can be called a ca

Texts

```
<text id="d00->
```

```
<sentence_id="d001.s001">
```

Your Oct. 6

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

Raw Texts

Your Oct. 6 editorial "The Ill Homeless" referred to research by us and six of our colleagues that was reported in the Sept. 8 issue of the Journal of the American Medical Association .

```
    Texts
```

<text id="d001">

```
<sentence id="d001.s001">
```

Your Oct. 6

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

Raw Texts

Your Oct. 6 editorial "The First term colleagues that was report of the first sentence Association .

rred to research by us and six of our of the Journal of the American Medical

Texts

<text id="d001">

<sentence id="d001.s001

Your Oct. 6

```
<instance id="d001.s001.t002" lemma="III" pos="a">III</instance>
<instance id="d001.s001.t003" lemma="Homeless"
pos="n">Homeless</instance>
```

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

- A benchmark : a sense-annotated corpus
- The same corpus without sense-annotations

In Vitro Evaluation : metrics

$$precision = \frac{words \ correctly \ tagged}{tagged \ words}$$

$$recall = \frac{words \ correctly \ tagged}{words}$$

$$F - measure = \frac{2 \times precision \times recall}{precision + recall}$$
If all words are tagged

$$P = R \rightarrow F - measure = \frac{2 \times P \times P}{P + P} = \frac{2 \times P^{2}}{2 \times P} = P$$

In Vitro Evaluation : metrics

$$precision = \frac{words \ correctly \ tagged}{tagged \ words}$$

$$recall = \frac{words \ correctly \ tagged}{words}$$

$$F - measure = \frac{2 \times precision \times recall}{precision + recall}$$

If all words are tagged

$$P = R = F - measure$$

In Vitro Evaluation : example

- Example :
 - 100 words to tag
 - The system tags 75 words
 - 50 are correctly tagged
 - Precision : 50/75 = 66%
 - Recall : 50/100 = 50%
 - F-measure $\approx 56.9\%$

Bounds of performance

- Evaluating performance of an algorithm relative to the difficulty of the benchmark
- Lower bound (baseline)
 - random assignement: average score obtained when a random sense is chosen for each words in the text

$$random \, baseline = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|senses(w_i)|}$$

- most frequent sense: score when the most frequent sense in the language is chosen for each word in the text
- Upper bound
 - Highest performance reasonably attainable
 - Average human interannotator agreement : Around 90%

Example: Semeval 2007 task 7

- All-words task: sense labelling task over all parts-of-speech (nouns, verbs, adjectives, adverbs)
- 2269 words over 5 texts: journalism, book review, travel, computer science, biography
- Disambiguated reference tagged with WordNet senses Evaluation in terms of Precision, Recall, F1 score
- Currently the most recent general English All-words disambiguation task available.

Example: semeval 2007 task 7

- Coarse-grained evaluation : close senses are counted as equivalent (e.g. snow/precipitation and snow/cover)
- Two ways to use this benchmark
 - A Posteriori
 - Input: fine-grained (WordNet Senses)
 - Random baseline: 61,27%
 - First sense baseline: 78,89%
 - A priori
 - Input: coarse-grained
 - Random baseline: 52,57%
 - First sense baseline: 78,89%

General Overview of Word Sense Disambiguation Systems

Word Sense Disambiguation Process

- Composed of 3 steps
 - Build/select raw lexical material(s)
 - Build an elaborate resource
 - Use that resource to lexically disambiguate a text

Build/Select of Raw Lexical Material(s)

- One or more of several types of materials can be used:
 - Dictionaries, encyclopedias, lexical databases
 - Unnanotated corpora, Sense-annotated corpora
- Among existing material, some:
 - Are generated/built automatically
 - Require significant human effort and supervision

Build an elaborate resource

- Computational representation of an inventory of possible word senses
- Two ways of obtainig inventories of word senses:
 - Induction from word contexts
 - When only non-annotated corpora are available
 - Human experts
 - e.g. Dictionaries, Structured Lexical Resources
- Many undelying computational representations:
 - Semantic Networks (graphs)
 - Bags of words & n-gram models
 - Vector spaces

Use the resource to disambiguate

- The Word Sense Disambiguation algorithm
 - More or less complex
 - SVMs, Naive Bayes, Deep Neural Network, etc.
 - PageRank, Ant Colony algorithms, genetic algorithms, etc.
- Several common parameters are involved:
 - Context : window, phrase, sentence, text,...
 - Depth in a graph
Resources

- In WSD, we consider two kinds of resources
 - Knowledge
 - Machine readable dictionaries
 - Lexical Databases
 - Encyclopedias
 - Corpus
 - Non-sense-annotated corpus
 - Sense-annotated corpus

Resources : knowledge

- Machine readable dictionaries
 - Longman, Oxford Advanced Learner's dictionary,...
 - Until the 1990's for English
- Lexical Databases
 - WordNet from the 1990's [Miller]
 - BabelNet [Navigli, 2012]
- Encyclopedias
 - Wikipedia from 2007 [Mihalcea, 2007]

Resources: non-sense-annotated corpora

- A set of texts
- Covers one or more domains
- One or more languages
- Up to dozens of millions of words
- Can be lemmatized and tagged with part of speech information
- Various sources :
 - Newspapers, books, encyclopedias, Web,...

Resources: sense-annotated corpora

- SemCor [Miller et al., 1993]
- Subset of the Brown Corpus (1961)
 - 700,000 words
 - 30,000 words manually tagged with Wordnet synsets
 - 352 texts
 - For 186 texts, nouns, verbs, adjectives, and adverbs tagged : 192,639 words
 - For 166, only verbs are tagged : 41,497 words

Resources: sense-annotated corpora

- The Defense Science Organisation corpus [Ng & Lee, 1996]
 - Non-freely available sense- annotated English corpus
 - 192800 word occurences manually tagged with WordNet synsets
 - Annotations cover
 - 121 nouns (113,000 occurences)
 - 70 verbs (79,800 occurences)
 - The most frequent, as ambiguous possible.
 - Coverage corresponding to 20% of verb and noun occurences in English texts

Resources: Sense-annotated corpora

- Corpora from evaluation campaigns
 - Most of them in English
 - But also on Japanese, Spanish, Chinese
 - Uncommonly beyond 5000 tagged words
- Other languages:
 - Dutch SemCor [Vossen et al., 2012]
 - 250,000 manually tagged words
 - Basque SemCor [Agirre, 2006]

Sense-annotated corpora : limitations

- Really difficult task compared to other annotation tasks
- Penn Treebank [Taylor et al., 2003]
 - Part of speech tagged corpus
 - Only 45 possible tags
 - 3000 annotations per hour
- WordNet synset-annotated corpus
 - 117,000 possible tags
 - Example for the Defense Science Organisation corpus
 - 191 different nouns, 1800 possible tags
 - 1 man-year for 192000 word occurrences 150-250 annotations per hour

Sense-annotated corpora : limitations

- Have to be repeated for
 - each sense inventory;
 - each language;
 - each domain.
 - With updated corpus (new senses, new words...).

Ex : mouse in SemCor based on the Brown Corpus (1961)

Mitigating the limitations

- Improving annotation speeds
 - [Mihalcea & Chklovski, 2003] WSD algorithm on corpus
 > Then human verification
 - Not much improvment
- Usage of new kinds of sense-annotated corpora
 - E.g. Wikipedia and its internal links [Mihalcea, 2007]
 - A page can be considered as a sense
- More languages
 - BabelCor

UFSAC: Unification of Sense Annotated Corpora and Tools [Vial et al., 2018]

- In English, there are a dozen of manually annotated sense annotated corpora, but their file formats are very different from one another.
- Unification of these corpora in a format
 - easy to use
 - Easy to understand
- Facilitate
 - the creation of new WSD systems
 - the evaluation of existing ones

https://github.com/getalp/UFSAC

UFSAC: Unification of Sense Annotated Corpora and Tools [Vial et al., 2018]

Corpus	Sentences	Words		Annotated parts of speech			
		Total	Annotated	Nouns	Verbs	Adj.	Adv.
SemCor [7]	37176	778587	229517	87581	89037	33751	19148
DSO [11]	178119	5317184	176915	105925	70990	0	0
WordNet GlossTag [6]	117659	1634691	496776	232319	62211	84233	19445
MASC [4]	34217	596333	114950	49263	40325	25016	0
OMSTI [14]	820557	35843024	920794	476944	253644	190206	0
Ontonotes [3]	21938	435340	52263	9220	43042	0	0
Senseval 2 [2]	238	5589	2301	1061	541	422	277
Senseval 3 task 1 $[13]$	300	5511	1957	886	723	336	12
SemEval 2007 task 07 $[10]$	245	5637	2261	1108	591	356	206
SemEval 2007 task 17 $[12]$	120	3395	455	159	296	0	0
SemEval 2013 task 12 $[9]$	306	8142	1644	1644	0	0	0
SemEval 2015 task 13 $[8]$	138	2638	1053	554	251	166	82

Analysis of resources for WSD

Large size			
Sense- Annotated Corpus			
Some Annotated data			
No	Knowlegde-poor	Knowledge	► Knowlegde-rich

Analysis of resources for WSD

Large size		
Sense- Annotated Corpus Some Annotated data		More human supervision → Most expensive
No	Knowloado noor	

Knowledge

Analyse of resources for WSD

Languages Resources Available

WSD Approaches

WSD Approaches

Large size			
Sense- Annotated Corpus Some Annotated data			
No	Word Sense Induction		
	Knowlegde-poor	Knowledge	Knowlegde-rich

Word Sense Disambiguation Process

- Composed of 3 steps
 - Build/select of raw lexical material(s)
 - Build an elaborate resource
 - Use that resource to lexically disambiguate a text

Word Sense induction (WSI)

- Word Sense induction (or discrimination)
- Build/select raw lexical material(s)
 - Only raw (no sense annotations) corpora
- Build an elaborate resource
 - Induce word senses from contexts
- Use that resource to lexically disambiguate a text
 - Open

WSI : Build an elaborate resource

- Use only raw corpora
- Induce word senses from contexts
- Harris' (1954) Distributional semantics principle -
 - Hypothesis : the meaning of a word comes from its context
- Example:
 - "The mouse is eating cheese", "The cat is hunting a mouse"
 - "The mouse is linked to the computer","my mouse is broken"

WSI : Build an elaborate resource

- Induce word senses from input text by clustering word occurrences
- Computational representation:
 - Vectors, Bag of words
- Clustering algorithms : Kmean,...
- Graphs: each node is a word and edges are coocurences, senses are given by identification of hubs (clusters)

WSD Approaches

Useful heuristics

- Based on observations
- One sense per discourse [Gale et al., 1991]
- One sense per collocation [Yarowsky, 1993]

One sense per discourse [Gale et al., 1991]

- Random sample of 108 nouns
- 300 articles studied
- 3 judges
- Only 6 articles judged to contain multiple senses of one of the test words
- Tendency to share senses in the same discourse extremely strong: 98%

One Sense per Collocation [Yarowsky, 1993]

- Collocation : sequence of words or terms that co-occur more often than would be expected by chance
- Types of collocations:
 - adjective+noun : *peur bleue, strong fever*
 - noun+noun (such as collective nouns): meute de loups, douzaine d'œufs, wolf pack, dozen egg
 - verb+noun: prendre une gifle, prendre l'escalier, chair a meeting, conduct an experiment
- 90% to 99% for an average of 95% share senses in texts

WSD Approaches

WSD Approaches

Large size		
Sense- Annotated Corpus Some Annotated data		Similarity-based methods
	Knowlegde-poor	Knowledge

Word Sense Disambiguation Process

- Composed of 3 steps
 - Build/select raw lexical material(s)
 - Build an elaborate resource
 - Use that resource to lexically disambiguate a text

Word Sense Disambiguation Process

- Composed of 3 steps
 - Build/select of raw lexical material(s)
 - Mandatory: MRD or Lexical Base
 - Optional: corpus (sense-annotated or not)
 - Build an elaborate resource
 - Various ways to construct
 - Use that resource to lexically disambiguate a text
 - Local algorithm : semantic relatedness between senses
 - Global algorithm : Various

Semeval 2007 map

[Chan et al., 2007] Large size 82.5% [Novischi et al., 2007] UoR-SSI 81,45% [Navigli & Velardi, 2005] [Cai et al., 2007] 83,21% 81,58% [Navigli & Ponzetto, 2012] 68,5%*-77,1%* Annotated corpus Some ACA-ExtLesk Annotated [Schwab et al., 2012] Data 77,64%-79,03% ACA-ExtLesk [Schwab et al., 2011] 74,01% [Miller et al., 2012], [Miller et al., 2012], No 74,81%*-79,4%* 81,03%* Knowledge-Knowledge-Knowledge rich poor

WSD Approaches

WSD Approaches

Word Sense Disambiguation Process

- Composed of 3 steps
 - Build/select raw lexical material(s)
 - Build an elaborate resource
 - Use that resource to lexically disambiguate a text

Supervised WSD

- Build/select raw lexical material(s)
 - Only using sense annotated corpus/corpora
- Build an elaborate resource
 - Learn one classifier per word
- Use that resource to lexically disambiguate a text
 - Use classifiers to find the best sense for each word in texts

Supervised Word Sense Disambiguation

- Machine Learning techniques
- Learn classical classifiers on sense-tagged corpora
 - Support Vector Machines NUS-PT, (Chan et al., 2007)
 - Naïve Bayes NUS-ML, (Cai et al., 2007)
 - Maximum Entropy / Support Vector Machines LCC-WSD, (Novischi et al., 2007)
- One classifier per word

=> state of the art on WSD 2007 -> 2016

Deep Neural Networks

- 2016 → ...
- [Yuan et al., 2016]
- [Raganato et al., 2017]
- [Vial et al., 2018]
- [Vial et al., 2019]
[Yuan et al., 2016]

- LSTM language Model (Long Short-Term Memory)
- Give a prediction for a target word (classification)
- Closest sense is assigned
- Language model learned on a private corpus of 100 billions words (Google news)

context

• Reproductibility is impossible

[Raganato et al., 2017]

- Directly predict sense for each word
- Predict word when no sense can be assigned
- Multi-task learning (POS + WSD)
- Reproductibility is possible
- Can't learn on partially annotated data

[Vial et al., 2018]

- Input layer : pre-trained vectors (Glove (Pennington et al., 2014))
- Hidden layer : Bidirectional LSTM (size : 1000)
- Output layer : size number of senses (~ 100 000)
- Dropout : 50%

State of the art neural approach for supervised Word Sense Disambiguation

Multilingual WSD Situation in 2015 (Methods)

Multilingual WSD Situation in 2015 (Methods)

Cressie Grenoble

21

Situation in 2015 (Methods and Languages)

CMTS Greadle ()

22

Situation in 2015 (Methods and Languages)

23

Situation in 2015 (Methods and Languages)

24

Work on WSD for anything else but English: Sense-annotated corpus wanted!

25

From English Sense-Annotated Corpus [Hadj Salah et al., 2018]

- Only need English-to-target-language machine translation system
- Method:
 - Translation of corpus to target language (home-made machine translation system or external tool)
 - Word alignment (FastAlign)
 - Post-processing (word reordering, duplication correction,...

26

The mouse ate the cheese

Crenoble Grenoble Alpes

The mouse ate the cheese La

La souris mangea le fromage

Translation

Work on WSD for anything else but English: sense-annotated corpus wanted!

- Just need an English to target language Machine Translation system
- Method
 - Translation of corpus to target language (home-made machine translation system or external tool)
 - Word alignment (FastAlign)
 - Post-processing (word reordering, duplication correction,...

UFSAC [Vial et al., 2018]

- Unification of Sense Annotated Corpora and Tools
- 12 English Corpora

Situation in 2019 (resources)

resource	Sentence	Words		Part of Speech			
		Overall	Annotated	Nouns	Verbs	Adjectives	Adverbs
SemCor	37 176	778 587	229 533	87 581	89 051	33 752	19 149
DSO	101 004	2 705 190	176 197	105 245	70 952	0	0
WNGT	117 659	1 634 691	496 776	287 798	77 234	107 135	24 609
MASC	31 760	585 354	113 546	49 474	39 356	12 894	11 822
OMSTI	820 084	35 800 061	920 357	476 692	253 555	190 110	0
OntoNotes	124 851	2 475 926	233 616	79 765	153 851	0	0
SemEval 2007 task 07	245	5 637	2 261	1 108	591	356	206
SemEval 2007 task 17	126	3 438	455	159	296	0	0
SemEval 2 013 task 12	306	8 142	1 644	1 644	0	0	0
SemEval 2015 task 13	138	2 637	1 053	554	251	166	82
Senseval 2	238	5 589	2 301	1 061	541	422	277
Senseval 3 task 1	300	5 507	1 957	886	723	336	12
Total (UFSAC)	1 233 649	44 010 759	2 179 696	1 091 967	686 401	345 171	56 157
Total (UFSAC-Ara)	1 233 649	36 213 777	2 001 918	1 011 258	624 771	314 449	51 440
Total (UFSAC-Fra)	1 233 649	41 447 346	1 661 726	949 304	526 715	149 306	36 401

UFSAC [Vial et al., 2018], UFSAC-ARA [Hadj Salah et al., 2018]

- https://github.com/getalp/UFSAC
- Marwa Hadj Salah, Loïc Vial, Mounir Zrigui, Hervé Blanchon, Benjamin Lecouteux, Didier Schwab

Neural Word Sense Disambiguation

33

Drawbacks of current supervised systems

- Output vocabulary (number of sense tags) is large
 - WordNet $3.0 = 206\ 941\ senses$
 - These are too many outputs for the softmax layer of a typical NN
- Sense annotated corpora = costly resource ; SemCor: largest manually annotated corpus but only 16% of all WordNet senses are represented

Sense Vocabulary Compression

- Form groups of similar senses, for instance:
 - group n1 : {mouse1, rat1, rodent1...}
 - group n2 : {mouse4, keyboard1, click4...}
- Learn to predict group tags instead of sense tags during training
- Find back the "true" sense at disambiguation time

State of the art on WSD

At training time:

State of the art on WSD

DNNs and lexical database : best of both worlds

- Smaller number of senses
 - Smaller size of neural models
 - Shorter training time
- Increase coverage
- Better generalization
- Improve results (see below for Eng.

Situation in 2019 (resources)

Wrap up

37

Conclusions

On English, state-of-the-art performance (Best paper TALN 2019)

- Unification of sense-annotated corpora
- Use of knowledge to obtain better generalisation in Neural WSD
- On other langages (where there is MT from English)
 - Supervised WSD is now possible
 - State of the art with the same method
- Joint models with neural machine translation: 2 PhDs (Marwa Hadj Salah (Ara), Loïc Vial)

Perspectives

Automatic Generation of pictograms from speech or text: for cognitive disable people and allophone population - Geneva Hospital, Univ. Geneva (Suisse) and Univ. Louvain-la-Neuve (Belgium)

Conclusion

• Sense Vocabulary Compression :

 \rightarrow Easy to implement method

 \rightarrow Improves the coverage and generalization ability of neural WSD systems

- \rightarrow Reduces the number of parameters of neural models
- New "contextualized" word embeddings (ELMo, BERT) :
 - → Greatly improve the performance of neural WSD systems
 - \rightarrow Improve the state of the art by almost 10 points
- Our code and our pre-trained models are available: https://github.com/getalp/disambiguate

Sense Vocabulary Compression through the Semantic Knowledge of WordNet for Neural WSD: by L. Vial, B. Lecouteux and D. Schwab

Bibliography

[Gale et al., 1991] One sense per discourse, Gale, William A. and Church, Kenneth W. and Yarowsky, David, HLT '91 Proceedings of the workshop on Speech and Natural Language, Pages 233-237, Harriman, New York, 1991

[Lesk, 1986] Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In SIGDOC '86: Proceedings of the 5th annual international conference on Systems documentation, pages 24-26, New York, NY, USA. ACM

[Navigli & Lapata, 2010]R. Navigli, M. Lapata, An experimental study on graph connectivity for unsupervised Word Sense Disambiguation, IEEE Transactions on Pattern, 2010

Analysis and Machine Intelligence 32 (2010) 678–692.

[Navigli & Ponzetto, 2012] R. Navigli and S. Ponzetto. BabelNet: The Automatic Construction, Evaluation and Application of a Wide-Coverage Multilingual Semantic Network. Artificial Intelligence, 193, Elsevier, 2012, pp. 217-250

[Rivest, 1987] Learning Decision Lists, Ronald Rivest, Machine Learning, 2, pp 229-246, 1987

[Sánchez-de-Madariaga & Fernández-del-Castillo, 2009] The bootstrapping of the Yarowsky algorithm in real corpora Ricardo Sánchez-de-Madariaga & José R. Fernández-del-Castillo, Journal Information Processing and Management: an International Journal, Volume 45 Issue 1, Pages 55-69, January, 2009

[Sarkar, 2009] Bootstrapping a Classifier Using the Yarowsky Algorithm, Anoop Sarkar

[Schütze, 1992] Dimensions of Meaning, H. Schütze Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, Supercomputing '92, Minneapolis, Minnesota, USA, 1992

[Yarowsky,1993] One Sense Per Collocation, Yarowsky, David, Proceedings of the Workshop on Human Language Technology, HLT '93, pages 266-271, 1993