
Neural Models in 
Information Retrieval
06/12/2022
Petra Galuščáková
petra.galuscakova@univ-grenoble-alpes.fr

1



● From probabilistic models to machine learning models
● Pre-BERT neural models
● BERT in IR

○ MonoBERT
○ Multi-stage architectures
○ Refining query and document representations
○ Dense retrieval

Outline

2



Text Ranking

User

Information
Need

Query

Search 
Engine

Documents

Ranked 
Document 

List

3



The Challenges of Exact Match

N = the total number of documents in the corpus

df(t) = the number of documents that contain term t

tf(t, d) = the number of times term t appears in document d

k1 and b are free parameters

L = the average document length across all documents in the collection

Term frequencyinverse document 
frequency

Probabilistic IR

4



The Challenges of Probabilistic IR

Issues:

Relies exclusively on exact term matching

-> Vocabulary mismatch problem

Source: https://sease.io/2022/01/tackling-vocabulary-mismatch-with-document-expansion.html
5



How to Deal with Vocabulary Mismatch Problem?

Stemming and text processing

Enriching query representations

Enriching document representations

Source: https://www.datacamp.com/tutorial/stemming-lemmatization-python

Play Play, game, piano, 
start, begin, stop, …

6



Learning to Rank

● Use supervised machine-learning techniques to learn ranking models

● Use hand-crafted, manually-engineered features:

○ Statistical properties of terms: functions of term frequencies, document frequencies, 

document lengths, proximity features

○ Intrinsic properties of texts: e.g. the amount of JavaScript code on a web page or the ratio 

between HTML tags and content, editorial quality, spam score,  the count of inbound and 

outgoing links and PageRank scores

○ Search engines: how many times users issued a particular query or clicked on a particular 

link

7



Pointwise VS. Pairwise

Credit: Keita Kurita, Machine Learning Explained: Learning to Rank Explained (with Code)
8



Learning to Rank - Loss Functions

● A pointwise approach only considers losses on individual documents, transforming the ranking 
problem into classification or regression. 

● A pairwise approach considers losses on pairs of documents, and thus focuses on preferences, that 
is, the property wherein A is more relevant than (or preferred over) B. 

● A listwise approach considers losses on entire lists of documents, for example, directly optimizing 
a ranking metric such as normalized discounted cumulative gain.

Most effectively applied in gradient boosting decision trees (ensemble of decision trees).

9



Pre-BERT Neural Models

10



 #NeuralIR papers at SIGIR

Source: Bhaskar Mitra 11



The Advent of Deep Learning

● Freed text retrieval from the bounds of exact term matching
● No need for the hand-crafted features

● Pre-BERT neural ranking models: representation-based and interaction-based

● BERT revolution ~ 2019 (substantially higher effectiveness)

12



Representation-based models

● Independently learning dense vector representations of queries and documents
● Compared to compute relevance via a simple metric such as cosine similarity or inner products
● Can be compared at ranking time, allows document representations to be computed offline

Pre-BERT:

● Deep Structure Semantic Model (DSSM) 
○ Constructs character n-grams from an input  (i.e., query or document) and passes the results to a series of 

fully-connected layers to produce a vector representation
● Dual Embedding Space Model (DESM)

○ Represents texts using pre-trained word2vec embeddings  and computes relevance scores by aggregating 
cosine similarities across all query–document term pairs. 

13



Interaction-based models

● Compare the representations of terms in the query with terms in a document to produce a similarity matrix 

that captures term interactions.

● This matrix then undergoes further analysis to arrive at a relevance score.
● Each entry m

i,j 
in the matrix is usually populated with the cosine similarity between the embedding of the i-th 

query term and the embedding of the j-th document term.

● Pre-BERT Models: DRMM, KNRM, MarchPyramid, PACRR

● Pre-BERT interaction-based models were typically more effective but slower than pre-BERT 

representation-based models.

14



Representation-based vs. Interaction-based Models

15

Representation vs. Interaction-based Models



To what extent do neural ranking models “work” on the limited amounts of training data that are publicly available?

16



To what extent do neural ranking models “work” on the limited amounts of training data that are publicly available?

Under limited data condition, most of the neural ranking methods were unable to beat the keyword search baseline.

Large data only available for the large companies.

17



BERT in IR

18



The Arrival of BERT

● BERT [Devlin et al., 2019] coming in October 2018
○ Helpful in many NLP tasks

● First application of BERT on IR in January 2019 [Nogueira and Cho, 2019] -> 30% improvement
● Large amounts of data not necessary, but helpful
● The availability of the MS MARCO collection [Nguyen et al., 2016], further mitigated data 

availability issues 

19



MS MARCO Collection

● Anonymized natural language questions drawn from Bing’s query logs
● Initially, designed to study question answering on web passages, but it was later adapted into traditional ad 

hoc ranking tasks

● Very natural, often ambiguous, poorly formulated, and may even contain typographical and other errors.

● For each query, the test collection contains, on average, one relevant passage (as assessed by human 

annotators)

● Prepared “triples”: query, relevant passage, non-relevant passage

At about what age do adults normally 
begin to lose bone mass? 

During childhood and early adulthood, more 
bone is produced than removed, reaching its 
maximum mass and strength by the mid-30s. 
After that, bone is lost at a faster pace than it is 
formed, so the amount of bone in the skeleton 
begins to slowly decline.

20



MS MARCO Collection

21



BERT in IR

The simplest and most straightforward formulation of text ranking: convert the task into a text classification 
problem.

Sort the texts to be ranked based on the probability that each item belongs to the desired class.

Train a classifier to estimate the probability that each text belongs to the “relevant” class, and then at ranking 
(i.e., inference) time sort the texts by those estimates.

A simple, robust, effective, and widely replicated model for text ranking

Start with a pretrained model and then fine-tune it further using labeled data from the target task.

Key limitation of BERT for text ranking: its inability to handle long input sequences

22



monoBERT

23



monoBERT

24

Reranking using monoBERT



The Effectiveness of monoBERT

25

monoBERT: Results



The Effectiveness of monoBERT

26



Effects of Reranking Depth

27



The Effectiveness of monoBERT

28



From Passage to Document Ranking

● monoBERT is limited to ranking paragraph-length passages, not longer documents
● How to deal with this:

○ Only use first n characters/sentences/paragraphs from the document
○ Avoid the problem by using transfer learning
○ Aggregation during the inference:

■ Scores
■ Representations

○ No guarantee that the segments are relevant in training

29



T5 in IR

30



T5
Like BERT, T5 [Raffel et al., 2019] is first pretrained on a large corpus of diverse texts using a 

self-supervised objective similar to masked language modeling in BERT

But it is adapted for the sequence-to-sequence context.

Just like in BERT, these pretrained models are fine-tuned for various downstream tasks using 

task-specific labeled data, where each task is associated with a specific input template.

31
Source: 
https://medium.com/analytics-vidhya/understand-t5-text-to-text-transfer-transformer-9bc1757989ab



T5 for IR 
[Nogueira et al., 2020]

Use the following input template:

Query: [q] Document: [d] Relevant: 

where [q] and [d] are replaced with the query and document texts, respectively, and the other parts of the template 

are verbatim string literals. 

The model is fine-tuned to produce the tokens “true” or “false” depending on whether the document is relevant or 

not to the query. That is, “true” and “false” are the “target tokens” (i.e., ground truth predictions in the 

sequence-to-sequence transformation).

Similar to monoBERT, monoT5 is deployed as a reranker.

32



T5 vs. BERT

33



Multi-Stage Architectures for 
Reranking

34



Multi-Stage Architectures for Reranking

35



Multi-Stage Architectures for Reranking

● Better balance tradeoffs between effectiveness (quality of the ranked lists) and efficiency (e.g. 

retrieval latency or query throughput).

● Exploit expensive features only when necessary

● Earlier stages in the reranking pipeline can use “cheap” features to discard candidates that are 

easy to distinguish as not relevant.

●  “Expensive” features can then be brought to bear after the “easy” non-relevant candidates have 

been discarded.

36



Pointwise Reranking

37



Pairwise Reranking

where di dj is a notation for stating that di is more relevant than dj (with respect to the query q).

38



● The result of model inferences comprises a set of pairwise comparisons between candidate texts. 

Evidence from these pairs still need to be aggregated to produce a final ranked list.

● Compare each candidate to every other candidate (e.g., from first-stage retrieval), and thus the 

computational costs increase quadratically with the size of the candidate set. 

● Due to the length limitations of BERT, the query, candidates di and dj are truncated to 62, 223, and 

223 tokens, respectively.

39

duoBERT [Nogueira et al., 2019]



duoBERT: Scores Aggregation

The SUM method measures the pairwise agreement that candidate di is more 
relevant than the rest of the candidates.

The BINARY method is inspired by the Condorcet method 

The MIN (MAX) method measures the relevance of di only against its 

strongest (weakest) “competitor”.

40



duoBERT [Nogueira et al., 2019]

41



duoBERT [Nogueira et al., 2019]

42



Refining Query and 
Document Representations

43



The vocabulary mismatch problem

● The searchers and the authors of the texts to be searched use different words to describe the same 

concept

● The relevant text that has no overlap with query terms will not be retrieved, and hence will never 
be encountered by any of the downstream rerankers.

● As an example, a text discussing automobile sales might be expanded with the term “car” to better 

match the query “car sales per year in the US”.

44



Doc2query [Nogueira et al., 2019]

45



Doc2Query: Examples

46



Doc2Query Results

47

Doc2Query: Results



Term Reweighting as Regression: DeepCT 
[Dai and Callan, 2019]

What if we were able to directly estimate the importance of a term 

in the context that the term appears in?

48



Term Reweighting as Regression: DeepCT 
[Dai and Callan, 2019]

49



Term Reweighting as Regression: DeepCT 
[Dai and Callan, 2019]

● 1) Inference is applied to compute a weight for each term in each text from the corpus. 
● 2) These weights are then rescaled from [0..1] to integers between 0 and 100 so they resemble term 

frequencies in standard bag-of-words retrieval methods. 
● 3) Finally, the texts are indexed using these rescaled term weights 

● New “pseudo-documents” are created in which terms are repeated the same number of times as their 
importance weights. 

● For example, if the term “boyle” is assigned a weight of four, it is repeated four times, becoming “boyle boyle 
boyle boyle” in this new pseudo-document. 

● A new corpus comprising these pseudo-documents, in which the repeated terms are concatenated together, 
is then indexed like any other corpus. 

● Retrieval is performed on this index as with any other bag-of-words query, although it is important to retune 
parameters in the scoring function.

50



Term Reweighting as Regression: DeepCT 
[Dai and Callan, 2019a]

51



DeepImpact [Mallia et al., 2021]

● Doc2query + DeepCT

● Impact Index: Directly store the quantized weight in the term frequency positions

● “Classic” index might be used -> fast inference

52



COIL [Gao et al. 2021] and UniCOIL [Lin and Ma, 2021]

● COIL 

○ Produces representations for each document token that are then directly stored in the inverted index

○ Instead of assigning scalar weights to terms in a query, the “scoring” model assigns each term a vector 

“weight”

○ Query evaluation in COIL involves accumulating inner products instead of scalar weights

○ Best performing sparse model

● uniCOIL
○ Reduce the token dimension of COIL to one (use scalar weights)

53



Dense Retrieval

54



Motivations

● BERT inference is slow. 

○ η(d) is not dependent on queries, what means that text representations can be precomputed 

and stored

○ The similarity function φ is fast by design and ranking in terms of φ over a large 

(precomputed) collection of dense vectors is typically amenable to solutions based on 

nearest neighbor search

55



Representation-based vs. Interaction-based Models

56

Representation vs. Interaction-based Models



We estimate:

the relevance of a text with respect to a query.

Thus, dense retrieval techniques need to address two challenges:

1) the representation problem, or the design of the encoders η·, to accurately capture the “meaning” of queries 

and texts from the corpus for the purposes of ranking; and

2) the comparison problem, or the design of φ, which involves a balance between what can be efficiently 

computed at scale and what is necessary to capture relevance in terms of the dense representations.

The similarity function is most commonly defined to be the inner product between the representation vectors

We refer to this as a “bi-encoder” design, which contrasts with a “cross-encoder”, which is the standard BERT design 

that benefits from all-to-all attention across tokens in the input sequence.

57

Dense Retrieval



Dense Retrieval

Image Source: Nicola Tonellotto 58



 Sentence-BERT [Reimers and Gurevych, 2019]

59



SentenceBERT Results

● Without any fine-tuning, average pooling of BERT’s contextual representations appears to be 

worse than average pooling of static GloVe embeddings, based on standard metrics for semantic 

similarity datasets.

● Out-of-domain fine-tuning leads to large gains

● Further in-domain fine-tuning provides an additional boost in effectiveness, consistent with the 

multi-step fine-tuning approaches

60



Per-Token Representations and Late Interactions: ColBERT 
[Khattab and Zaharia, 2020]

Source: Thibault Formal, Stéphane Clinchant 61



Per-Token Representations and Late Interactions: ColBERT 
[Khattab and Zaharia, 2020]

● As a preprocessing step, the representation of each token from the corpus is indexed using Facebook’s 

Faiss library for nearest neighbor search, where each vector retains a pointer back to its source (i.e., the 

text from the corpus that contains it).

● At query time, ranking proceeds as follows:

○ In the first stage, each query term embedding η(q
i
) is issued concurrently as a query and the top k 

texts from the corpus are retrieved by following the pointer of each retrieved term vector back to its 

source. 

○ In the second stage, these candidate texts are scored using all query token representations 

according to the MaxSim operator

62



Per-Token Representations and Late Interactions: ColBERT 
[Khattab and Zaharia, 2020]

63



Per-Token Representations and Late Interactions: ColBERT 
[Khattab and Zaharia, 2020]

● ColBERT has closed much of the gap between monoBERT and pre-BERT neural ranking models. 

It is able to accomplish this with only modest degradation in effectiveness compared to monoBERT 

reranking.

● One major drawback of ColBERT: the space needed to store the per-token representations of texts from 

the corpus

64



Further Reading

Jimmy Lin, Rodrigo Nogueira, Andrew Yates: Pretrained Transformers for Text Ranking: BERT and 
Beyond, Synthesis Lectures on Human Language Technologies, Morgan & Claypool, October 2021.

65



Thesis Proposal / Internship

66

Supervisors: Philippe Mulhem, Petra Galuscakova
Team : MRIM group, LIG laboratory https://lig-mrim.imag.fr/
Duration : 5 months
Masters: MOSIG DSAI, MSIAM 

Currently, many state of the art IR approaches stack multiple retrieval processes. For instance, the best performing models at the MSMARCO Deep 
Learning Track  rely on reranking, i.e. the first retrieval stage is done on a large corpus composed of millions of documents, and then the second retrieval 
stage is applied on the top-results of the first retrieval. Implicitly, such stacked retrieval process is based on the following hypotheses:
H1-Efficiency: Some retrieval models are much faster, and thus much more able to process large sets of documents in a reasonable time, than others ;
H2- Effectiveness: Some retrieval models perform better than others.

With respect to these hypotheses, stacking employs efficient and somewhat effective models in its first retrieval stage, and the most effective systems in 
the second stage, to achieve good results on large sets of documents. Of course, a simple sequence stacking is not the only possible combination being 
applied.  Different retrieval approaches may be applied in parallel and merged, as we did in previous experiments. Moreover, these models may be 
combined with the recent approaches such as Colbert and Unicoil, which tend to be efficient while still being highly effective.  

The goal of this internship is to define a framework able to propose stackings generation based on the features of the models considered, and then 
experiment the proposed stacking to verify the improvement achieved.

Formally, the goals of this work is thus following:
i) Formulate a set of hypotheses which may define a stacked retrieval
ii) Formalize the stacking processes according to the hypotheses formulated in i)
iii) Perform experiments with different stacking retrieval setups using several common IR test collections, such as TREC-DL 2021


