

Information Access and Retrieval (GBX9MO23)

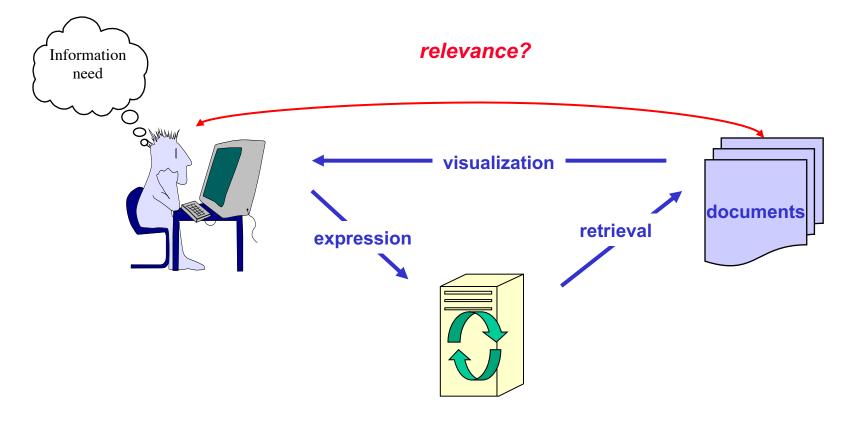
Evaluation of Information Retrieval Systems M2R – MOSIG 2021-2022 Philippe Mulhem

Philippe.Mulhem@imag.fr http://lig-membres.imag.fr/mulhem/

Outline

- 1. Introduction
- 2. Recall/Precision measures
- 3. Recall/Precision curves
- 4. Mean Average Precision
- 5. F-measure
- 6. Precision@x documents
- 7. Discounted Cumulated Gain
- 8. Test Collection
- 9. trec_eval software
- 10. Conclusion

- Challenge of Information Retrieval:
 - Content base access to documents that satisfy an user's information



- Parameters
 - the effort, intellectual or physical, needed to users to express queries
 - response time
 - display of results (user's capability to use the retrieved documents)
 - corpus quality according to the user's needs
 - capability of the system to retrieve all the relevant documents and to avoid retrieving unrelevant ones.

• For the last point (retrieval of relevant docs), comparing IRSs in a theoretical way (using their model) is a unsolved problem

so: use black box tests

We compare the results of a system with *ideal answers* to given queries.

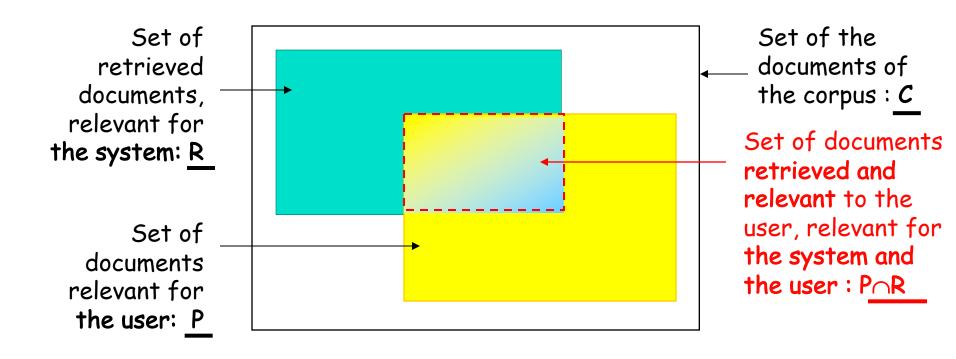
- Test collection (Cranfield Paradigm)
 - a set of documents (corpus) C
 - a set of queries on C
 - a set of relevant documents for each query
 - Expert users assess the relevance of each doc of the corpus according to each query
 - \rightarrow These are the ideal answers

→ classically binary: relevant/non-relevant

 \rightarrow may be numbers (4 \rightarrow highly relevant, ..., 0 \rightarrow non-relevant)

- one (or several) evaluation measure (s)
 - Well defined
 - That analyse one aspect of the quality of systems
 - Ex. quality of the system for the top-documents in the result, ...

- To compare user (ideal) and system relevances:
 - Using binary relevance assessments



- The essential criteria are:
 - *recall*: ability of the system to give in the answer all the relevant documents according to the user
 - *precision*: ability of the system to give in the answer only relevant documents according to the user

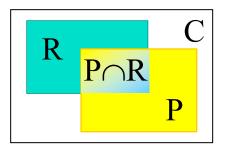
These two criteria are antagonistic:

• Most of the time, when we improve one we degrade the other...

- The recall is the ratio of
 - The number of retrieved documents by the system and relevant to the user
 - Divided by the number of all the documents of the corpus that are relevant to the user

$$\begin{vmatrix} \mathbf{R} & \mathbf{C} \\ \mathbf{P} \cap \mathbf{R} \\ \mathbf{P} \end{vmatrix} \qquad recall = \frac{|P \cap R|}{|P|} \qquad \in [0,1]$$

- The precision is the ratio of
 - The number of retrieved documents by the system and relevant to the user
 - Divided by the number of the documents retrieved by the system



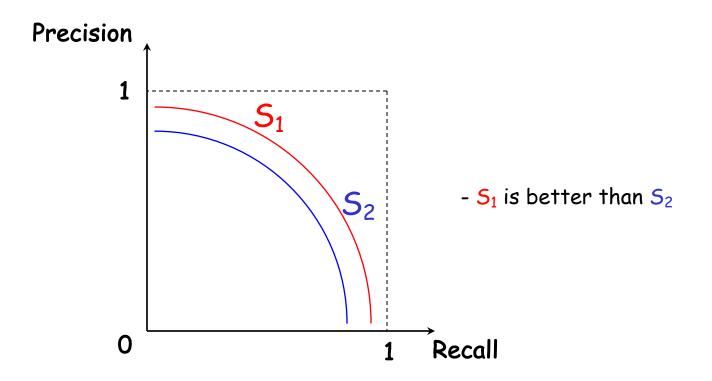
$$precision = \frac{|P \cap R|}{|R|} \in [0,1]$$

- For one query and one system : 2 real values
 - Example: a system gives 5 documents, among them 3 are relevant, knowing that there are 10 relevant documents in the corpus:
 - Recall = 3 / 10 = 0.3
 - Precision = 3 / 5 = 0.6
- BUT, no use of rankings:

	pos	S1 result	S2 result
	1	d235	d5
	2	d56	d12
	3	d786	d235
	4	d451	d976
	5	d67	d376

- same recall (0.3) and same precision (0.6) values for S1 and S2, but S1 is "better"
- We need more detailed evaluations
 - Recall/precision diagrams

• Comparison of 2 systems S1 et S2

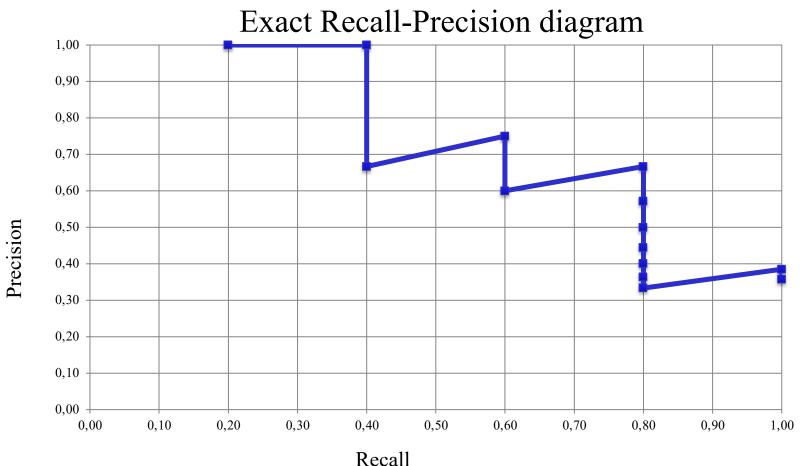


- Show the evolution of the precision and the recall with sorted results
- Method:
 - We compute the precision and the recall when considering only the <u>first result</u> as answer, then we do the same for the <u>two first results</u> of the system, the <u>first</u> <u>three results</u>, <u>and so on</u>, until each retrieved document is processed.

3. Recall/precision diagrams Corpus of 200 documents, one query Q that have 5 relevant docs {572, 588, 589, 590, 592}

Exact Recall-Precision table

				recall	precision
	position	document	is relevant	p and r / p	p and r / r
	1	588	Х	0,20	1,00
	2	589	Х	0,40	1,00
	3	576		0,40	0,67
	4	590	Х	0,60	0,75
	5	986		0,60	0,60
•	6	592	Х	0,80	0,67
•	7	884		0,80	0,57
	8	988		0,80	0,50
	9	578		0,80	0,44
	10	985		0,80	0,40
	11	103		0,80	0,36
	12	591		0,80	0,33
	13	572	Х	1,00	0,38
	14	990		1,00	0,36



• Limitation

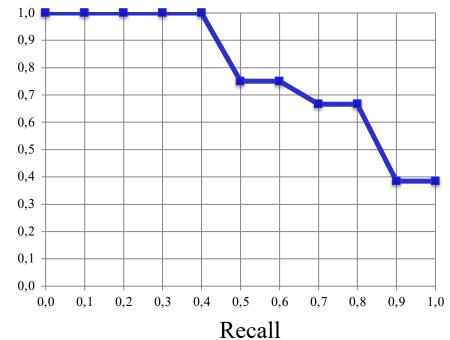
Difficult to fuse exact R-P curves for several queries, => problem of merging the recall values

- Solution: Interpolated Recall/Precision diagrams
 - Fix 11 recall points $R = \{0, 0.1, 0.2, ..., 0.9, 1\}$
 - Rule of the maximum
 - for each recall point v_r in R, select in the exact table the lines with recall greater or equal than v_r and <u>pick</u> the max of precision in these lines
 -> classically, begin with v_r=0, then 0.1, then 0.2, ..., then 1.0
 - Example from the exact table of slide 14
 - With $v_r = 0.6$, the max precision = 0.75 (from 4th result)
 - When, for a recall point, there is no precision value in the exact table according to the rule of the maximum, then we force its interpolated precision to 0 (i.e., the theoretical minimal precision value).
 - In the table of slide 14 ends in line 12, the precision is 0 for $v_r=1$

Interpolated recall/precision table

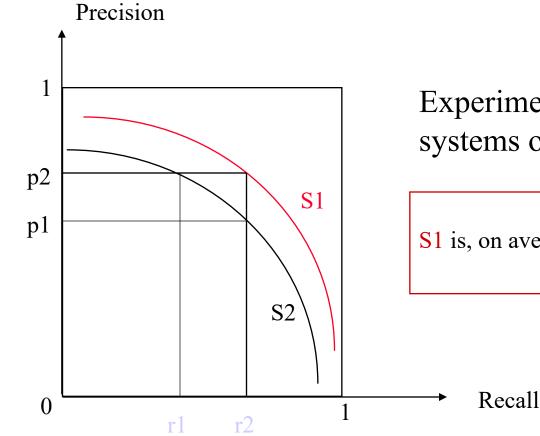
Recall	Precision	
0	1	
0.1	1	
0.2	1	
0.3	1	
0.4	1	
0.5	0.75	
0.6	0.75	
0.7	0.6667	
0.8	0.6667	
0.9	0.3846	
1	0.3846	

Interpolated recall-precision diagram



- A full evaluation considers many queries
- For nbQ queries > 1:
 - 1. Generate interpolated table for each query
 - 2. Average on each of the 11 recall points for all the nbQ queries
 - 3. Generate the overall recall/precision table + diagram of a system.

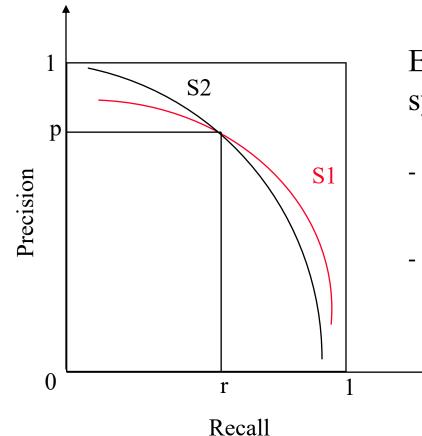
• Comparing systems



Experimental comparison of systems on a test collection :

S1 is, on average, always better than S2

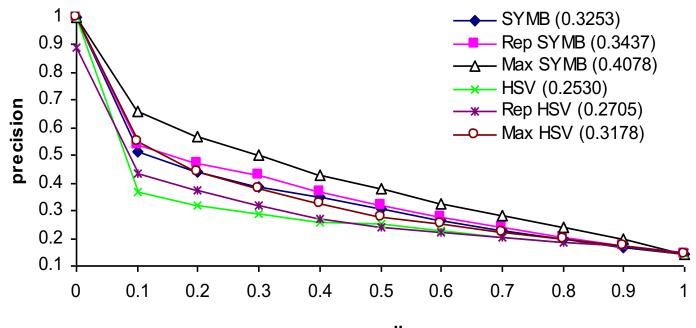
• Comparing systems



Experimental comparison of systems on a test collection :

- S2 is better than S1 for precision
 - Web search
- S1 is better than S2 for recall
 - Side effects of medicine drugs

– A real diagram



recall

4. Mean Average Precision

- AP and MAP
 - The idea here is to get a general view of the quality of a system, using only one value.
 - AP : average precision for one query
 - precision computed after each relevant document (from the exact table), averaged

$$AP = \frac{\sum_{k=1}^{n} \operatorname{Prec}(k) \cdot \operatorname{rel}(k)}{|P|}$$

- P : set of relevant documents, Prec(k) precision value at result k,

 $rel(k) = \begin{cases} 1 \text{ if document at position k is relevant} \\ 0 \text{ otherwise} \end{cases}$

- on the previous example: AP=0.76 (from table slide 14)
- MAP mean of the average precision over all query

5. F-measure

- Integrates recall and precision in one value (harmonic mean) $(1 \pm R^2)$ precision recall
- General form : $F_{\beta} = \frac{(1+\beta^2).precision.recall}{\beta^2.precision+recall}$
- In IR: $\beta = 1$

$$F_1 = \frac{2.precision.recall}{precision+recall}$$

6 Precision @x documents

- We evaluate the precision after x documents retrieved, and average over queries
- Useful when evaluating system for first results (10 or 20 for instance)
 - for instance in our example (table slide 14):
 - P@5 = 0.60
 - P@10=0.40
 - P@15=0.33

7. Normalized Discounted Cumulated Gain

- Cumulated Gain
 - Use of the result list from a system for a query: R
 - Ex: $R = \langle d_{23}, d_{56}, d_9, d_{135}, d_{87}, d_4 \rangle$ - Obtain the gain value for each document:

G[j]=gain(R[j])

• Ex : G= <1, 2, 0, 0, 2, 1>

Simple user model: more chances to look at the first doc, then less chances to look at the second results, ...)

y=1/Log2(1+x)

0,6

 \star – Compute the discounted gain for each document:

 $DG[j]=gain(R[j])/log_2(j+1))$

• Ex : DG = < 1, 1.26, 0, 0, 0.77, 0.36 >

- Compute cumulated gain at rank i: $DCG[i] = \sum DG[j]$

• Ex : DCG=<1, 2.26, 2.26, 2.26, 3.04, 3.39>

7. Normalized Discounted Cumulated Gain

• Normalization by using an ideal list I, list of the gains of the relevant documents of R sorted by decreasing gain value (ex. 4 docs with relevance of 2, 2, 1, 1)

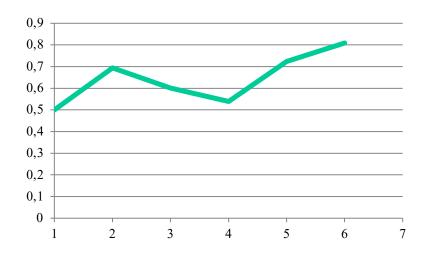
- Ex : I=<2, 2, 1, 1, 0, 0>

• Discounted gain for the ideal list between the position 1 and i :

- Ex : DCI=<2 3,26 3,76 4,19 4,19 4,19>

- Normalized Cumulated Gain : $nDCG[i] = \frac{DCG[i]}{DCI[i]}$
 - Ex : nDCG=<0,5 0,69 0,60 0,54 0,72 0,81>

- 7. Normalized Discounted Cumulated Gain
 - Curve (on our example):



– Difficult to read...

- More readable values using nDCG
 - nDCG@x: value AT x documents retrieved
 - On our example: nDCG@5=0.72

7. Normalized Discounted Cumulated Gain

- Cumulated gain compares an ideal result list to the result obtained
- Uses importance in rank (top more important):
 - Simulate user behaviour
- Takes into account non binary values of relevance
 + this is good !
 - difficult to interpret curves results
 - + use nDCG@x

8. Test collections

- Recall/precision/nDCG need <u>test collections</u>
- A test collection = a set of resolved queries q_i on a corpus
 - A large fixed corpus C of documents (> 100K)
 - queries representative of real user interests
 - diverse queries (subject, style, vocabulary)
 - large number (> 30)
 - Relevance assessments (which doc of C is relevant/not relevant for which query)
- Hard to assess manually the queries on the full corpus
- \rightarrow Assess only on *pooled* results [Voorhes 2001]
 - we run the queries q_i on several state of the art systems S_j , each system gets a result list per query $P_{i,j}$
 - we make a union of each results *sets* per query : $P_i = \bigcup_j P_{i,j}$
 - we evaluate user relevance on the P_i (=> not all the collection)

=> the non-assessed documents are considered non-relevant

 $P_i \cap R$

8. Test collections

- Use of pooling
 - Impact on "global" recall/precision values
 - potential decrease of precision
 - potential increase of recall
 - BUT
 - For the MAP, it has been shown that the ranking of systems are kept
 - If you test a system S *a posteriori* (i.e., it is not used in the pool) it <u>may be underevaluated</u>
 - S may retrieve relevant results that were not considered in the pool, so marked as non-relevant...

8. Test collections

- Evaluation measures adapted to pooling
 - Use condensed lists: evaluation of results considering
 ONLY the judged documents (different from slide 29)
 - Example, if a system gives R = <d₂₃, d₅₆, d₉, d₁₃₅, d₈₇, d₄> and if d₁₃₅ is not in the pool, then it's like R' = <d₂₃, d₅₆, d₉, d₅₆, d₉, d₅₆, d₈₇, d₄>, and we compute evaluations measures on R'.
 - $-\underline{P'(a)5}$: P@x using only *judged* documents
 - $-\underline{nDCG'@5}$: $\underline{nDCG@5}$ using only *judged* documents
 - P' (resp. nDCG') has the same role than P (resp. nDCG)

9. Trec-eval

• Software that generates the tables for the recall/precision diagrams and AP, P@5, 10, 20, 50 and 100 documents, and nDCG, and other measures

- http://trec.nist.gov/trec_eval/trec_eval.8.1.tar.gz

10. Conclusion

- Limitations
 - Binary relevance assessments for precision/recall based measures (unrealistic but widely used). INEX tried to extend this on structured documents (interpolated recall/precision using overlapping of characters).
 - Discounted Cumulated Gain used in eval
 - On large collections, difficult to make evaluations
 - One solution (TREC) pool the results for several systems
 - Evaluation measures take into account the pooling
 - Transfert such evaluation using log-files (Web search)?
 - Transfert such evaluation from one test collection to another one ?

10. Conclusion

- To do
 - Understand classical IR evaluation (Cranfield Paradigm)
 - Understand recall/precision measures and diagrams (redo the example, and make others removing one relevant document found, etc.)
 - Understand the nDGC computation.

Bibliography

- R. Baeza-Yates and B. Ribeiro-Neto, Retrieval Evaluation, Chapter 3 of Modern Information Retrieval, Addison Wesley 1999.
- J. Tague-Stucliffe, The pragmatics of Information Retrieval Experimentation, Revisited, Information Processing and Management, 28(4), 467-490, Elsevier, 1992.
- D. Harmann, The TREC Conferences, Proceedings of HIM'95, Konstanz, pp. 9-28.
- K. Järvelin and J. Kekäläinen, Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20(4), 422-446, 2002.
- E. Voorhees, The Philosophy of Information Retrieval Evaluation, Proceedings of the second Workshop CLEF on Evaluation of Cross_Language Information Retrieval Systems, pp. 355-370, LNCS 2406, Springer Verlag, 2001.